• 제목/요약/키워드: Fossil fuels

검색결과 669건 처리시간 0.027초

Autonomous Micro-grid Design for Supplying Electricity in Carbon-Free Island

  • Hwang, Woo-Hyun;Kim, Sang-Kyu;Lee, Jung-Ho;Chae, Woo-Kyu;Lee, Je-Ho;Lee, Hyun-Jun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1112-1118
    • /
    • 2014
  • In island and backcountry areas, electrical power is usually supplied by diesel generators. It is difficult for small scale diesel generators to have an economy of scale owing to the usage of fossil fuels to produce electricity. Also, there is a problem of carbon dioxide emissions that brings some environmental pollution to the entire region of the area. For solving those, this paper proposes a design method of autonomous micro-grid to minimize the fossil fuels of diesel generator, which is composed of diesel generator, wind turbine, battery energy storage system and photovoltaic generation system. The proposed method was verified through computer simulation and micro-grid operation system.

CO2 배출, 원자력에너지, 신재생에너지 발전량과의 관계분석: 한국, 일본, 독일을 중심으로 (Study on the Relationship between CO2, Nuclear, and Renewable Energy Generation in Korea, Japan and Germany)

  • 윤정혜;강상목
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.9-22
    • /
    • 2020
  • This study analyzed the short- and long-term effects of nuclear and renewable energy generation on CO2 emissions in Korea, Japan, and Germany from 1987 to 2016 by using the unit root test, Johansen cointegration test, and ARDL model. The unit root test was performed, and the Johansen cointegration test showed cointegration relationships among variables. In the long run, in Germany, the generation of both nuclear and renewable energy was found to affect CO2 emission reduction, while South Korea's renewable energy generation, including hydropower, increased the emissions. Japan only showed significance in fossil fuels. In the short run, in the three countries, the generation of nuclear and renewable energy, excluding hydropower, affected CO2 emission. However, in Korea and Germany, nuclear and renewable energy generation, respectively, affected CO2 emission reduction. Although the rest are significant, the results showed that they increased CO2 emissions.

Hydrogen production in the light of sustainability: A comparative study on the hydrogen production technologies using the sustainability index assessment method

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1288-1294
    • /
    • 2022
  • Hydrogen as an environmentally friendly energy carrier has received special attention to solving uncertainty about the presence of renewable energy and its dependence on time and weather conditions. This material can be prepared from different sources and in various ways. In previous studies, fossil fuels have been used in hydrogen production, but due to several limitations, especially the limitation of the access to this material in the not-too-distant future and the great problem of greenhouse gas emissions during hydrogen production methods. New methods based on renewable and green energy sources as energy drivers of hydrogen production have been considered. In these methods, water or biomass materials are used as the raw material for hydrogen production. In this article, after a brief review of different hydrogen production methods concerning the required raw material, these methods are examined and ranked from different aspects of economic, social, environmental, and energy and exergy analysis sustainability. In the following, the current position of hydrogen production is discussed. Finally, according to the introduced methods, their advantages, and disadvantages, solar electrolysis as a method of hydrogen production on a small scale and hydrogen production by thermochemical method on a large scale are introduced as the preferred methods.

평균-분산 모형을 이용한 화석에너지원 소비조합 구성에 관한 연구 (A Study on Construction of an Optimal Fossil Fuel Mix: A Portfolio-Based Approach)

  • 차경수
    • 자원ㆍ환경경제연구
    • /
    • 제20권2호
    • /
    • pp.335-356
    • /
    • 2011
  • 본 연구에서는 Markowitz (1952)의 평균-분산 모형과 지배원리에 입각하여 원유, 석탄, 천연가스로 대표되는 화석에너지원의 최적 소비조합을 구축하려 하였다. 이를 위해 1달러당 열량으로 정의된 화석에너지원들의 편익변동을 동태은닉공통인자 모형을 이용하여 동행부분과 개별 에너지원의 특이적 수급상황에 기초한 변동으로 분해한 후, 그 결과에 기초하여 최적 화석에너지원의 최적 소비조합을 구성하였다. 분석결과, 평균-분산 모형에서 최적 소비조합을 의미하는 효율적 프론티어 선상의 소비조합들에서는 사회적으로 도달 가능한 최저 수준의 원유소비 비중을 유지하면서 석탄보다는 천연가스의 소비비중을 높여야 하는 것으로 나타났다. 이와 같은 결과는 현재 우리나라에서 추구하고 있는 원유 및 석탄의 소비비중 축소전략과도 일치하는 결과라 할 수 있으며, 원유소비의 비중축소가 화석에너지원의 소비로부터 얻을 수 있는 편익향상과 함께 편익변동에 따르는 경제활동의 불안정성을 축소시킬 수 있는 방법임을 지적하는 것이라 할 수 있다.

  • PDF

스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향 (Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films)

  • 조재유;허재영
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.

Estimated CO2 Emissions and Analysis of Solid Recovered Fuel (SRF) as an Alternative Fuel

  • Kim, Sang-Kyun;Jang, Kee-Won;Hong, Ji-Hyung;Jung, Yong-Won;Kim, Hyung-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권1호
    • /
    • pp.48-55
    • /
    • 2013
  • The purpose of this study was to develop a $CO_2$ emission factor for refuse plastic fuel (RPF) combustion facilities, and calculate the $CO_2$ emissions from these facilities. The $CO_2$ reduction from using these facilities was analyzed by comparing $CO_2$ emission to facilities using fossil fuels. The average $CO_2$ emission factor from RPF combustion facilities was 59.7 Mg $CO_2$/TJ. In addition, fossil fuel and RPF use were compared using net calorific value (NCV). Domestic RPF consumption in 2011 was 240,000 Mg/yr, which was compared to fossil fuels using NCV. B-C oil use, which has the same NCV, was equal to RPF use. In contrast, bituminous and anthracite were estimated at 369,231 Mg/yr and 355,556 Mg/yr, respectively. In addition, the reduction in $CO_2$ emissions due to the alternative fuel was analyzed. $CO_2$ emissions were reduced by more than 350 Mg $CO_2$/yr compared to bituminous and anthracite. We confirmed that using RPF, an alternative fuel, can reduce $CO_2$ emissions.

CNG 승용 자동차의 배출가스 특성에 관한 실험적 연구 (Experimental Study of Emission Characteristics for CNG Passenger Car)

  • 김현준;이호길
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.34-39
    • /
    • 2015
  • 최근 차량용 에너지의 소비는 대부분 화석연료로부터 사용된다. 기존 화석 연료를 사용하는 자동차보다 친환경적이며 저렴하고 재생이 가능한 연료의 요구증대로 대체연료 자동차산업이 강조되고 있다. 오늘날 고옥탄가와 높은 자기발화온도 특징을 가지고 있는 천연가스는 저렴한 비용, 기존 화석연료보다 풍부한 매장으로 기존 스파크 점화엔진인 가솔린엔진의 대체에너지로 간주되고 있다. 본 연구는 기존 2리터 가솔린 엔진에 CNG 가스 분사시스템을 장착하여 전소 및 혼소 연료분사시스템을 설치하였다. 또한 CNG전소 및 가솔린/CNG 혼소차량의 ECU 제어전략을 최적화 하였다. 혼소차량에 대하여 NEDC모드 주행결과 가솔린 차량 대비 혼소차량의 CO2 저감율을 16%확인하였다. 또한 CO와 HC의 배기가스 배출량은 가솔린 차량과 동등한 수준을 확보하였다. 하지만 NOx의 배기가스 배출수준은 증가된 현상을 확인할 수 있었다.

COMBINED EFFECTS OF BD20, LOW SULFUR DIESEL FUEL AND DIESEL OXIDATION CATALYST IN A HD DIESEL ENGINE

  • Baik, D.S.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.653-658
    • /
    • 2006
  • The enormous increase in the use of fossil energy sources throughout the world has caused severe air pollution and a depletion of energy. Besides, it seems very difficult to comply with the upcoming stringent emission standards in vehicles. In order to develop low emission engines, research on better qualified fuels as alternative fuels to secure high engine performance becomes a more important issue than ever. Since sulfur contained in diesel fuel is transformed in sulfate-laden particulate matters when a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. But the excessive reduction of sulfur levels may cause the lubricity of fuel and engine performance to degrade. In this aspect, biodiesel fuel derived from rice bran is applied to compensate viscosity lost in the desulfurization treatment. This research is focused on the performance of an 11,000cc diesel engine and the emission characteristics by the introduction of ULSD(Ultra Low Sulfur Diesel), BD20(Diesel 80%+Biodiesel 20%) and a diesel oxidation catalyst, where BD20 is used to improve the lubricity of fuel in fuel injection systems as fuel additives or alternative fuels.

목재공급과 연료용 목재가 대기에 축적된 탄소저감에 미치는 잠재적 영향 : 탄소순환모형 접근법 (Potential Impact of Timber Supply and Fuel-Wood on the Atmospheric Carbon Mitigation : A Carbon Cycle Modeling Approach)

  • ;이덕만
    • 자원ㆍ환경경제연구
    • /
    • 제19권3호
    • /
    • pp.597-632
    • /
    • 2010
  • 지구온난화의 주요 원인이 되는 온실가스 증가는 화석연료의 사용과 세계 각 지역에 분포된 산림의 벌채 및 파괴에 주로 기인하고 있다. 화석연료의 연소는 대기에 탄소를 증가시키는 반면에 산림자원과 더불어 화석연료 소비의 감소를 초래하는 연료용 목재의 사용은 대기의 탄소를 일정하게 유지하는 역할을 수행한다. 특히, 목조 주택과 목조구조물, 그리고 산림을 구성하는 나무는 지하에 매장된 화석연료처럼 대기로부터 탄소를 흡수하여 저장하는 기능을 한다. 따라서 본 연구는 지구온난화의 완화를 위해 산림자원이 기여하는 현안들을 논의하기 위해 목재시장, 화석연료시장, 탄소순환 과정을 결합한 통합모형을 개발하였다. 본 연구는 이산시간 적정제어이론을 사용하여 통합모형에 포함된 내생변수들의 적정시간경로와 운동방정식, 그리고 정상상태에서의 해를 도출하였다. 본 연구는 이 결과를 바탕으로 대기에 축적되는 탄소를 줄이기 위해 규제당국이 교부하거나 부과할 보조금 및 조세의 적정규모를 규명하였다. 아울러 본 연구는 대기에 축적되는 탄소로 인해 발생하는 사회적 비용의 증가가 내생변수들에 미치는 영향을 분석하기 위해 시뮬레이션을 시도하였다. 그 결과 본 연구는 기존연구들이 제안한 연구결과와는 달리 사회적 비용의 증가가 산림자원의 적정수확기간에 미치는 영향이 매우 미약하다는 사실을 발견하였다.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • 배중면
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF