• Title/Summary/Keyword: Fossil fuels

Search Result 669, Processing Time 0.033 seconds

Modeling of Thermodynamic Properties of Saturated state Hydrogen using Equation of State (상태방정식을 이용한 포화상태 수소의 열역학적 물성 모델링)

  • Bong-Seop Lee;Hun Yong Shin;Choong Hee Joe
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.550-554
    • /
    • 2023
  • Fossil energy sources are limited in their sustainable use and expansion due to global warming caused by carbon dioxide emissions. Hydrogen is considered as a promising alternative to traditional fossil fuels. To ensure the stable long-term storage, it is necessary to accurately predict its thermodynamic properties at cryogenic temperatures. Therefore, this study aimed to investigate thermodynamic properties, such as saturated vapor pressure and density, enthalpy, and entropy of liquid and gas, using cubic equations of state that demonstrate relatively simple relationships. Among the three types of equations of state (Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), and Peng-Robinson (PR)), the SRK model exhibited relatively accurate prediction results for various physical properties.

An Analysis of Effects of Changes in Foreign Exchange Rates on the Domestic Energy Prices : Diesel, Heavy Oil, and LNG (환율변동이 국내 에너지가격에 미치는 영향 분석 : 경유, 중유, LNG를 중심으로)

  • Jung Gi Chul;Choi Jea Seoung
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.11-16
    • /
    • 1999
  • Oil and LNG products are characterized by the facts that the raw materials are all imported and financing is dependent heavily upon foreign countries. This makes the oil and LNG products sensitive to changes in foreign exchange rates. However, the extent to which they respond to changes in foreign exchange rates, particularly the extent of price changes, vary considerably, due to the differences in the structures of price determination. The purposes of this paper are twofolds. The first one is to analyze the structures of price determination of diesel, heavy oil, and LNG. The second one is to analyze the effects of changes in foreign exchange rates on the prices of and price competitiveness of the fuels in question through the sensitivity analysis. The results of the sensitivity analysis indicate that diesel price is most sensitive and heavy oil price is least sensitive to changes in foreign exchange rates.

  • PDF

A Case of Pulmonary Injuny Induced by Accidental Exposure to High Level of Nitrogen Dioxide ($NO_2$) (고농도의 이산화질소($NO_2$)흡입으로 유발된 급성 폐손상 1례)

  • Chang Jin Hyuck;Kim Do Youn;Kim Young;Chang Yoon Soo;Kim Hyung Jung;Ahn Chul Min;Kim Sung Kyu;Kim Tae Hoon
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.3 no.1
    • /
    • pp.40-44
    • /
    • 2005
  • Nitrogen dioxide ($NO_2$), which produced during the process of silage, metal etching, explosives, rocket fuels, welding, and by-product of burning of fossil fuels, is one of major components of air pollutant. Accidental exposure of high level of $NO_2$ produces cough, dyspnea, pulmonary edema which may be delayed $4\~12$ hours and, in $2\~6$weeks, bronchiolitis obliterans. We experienced a case of acute pulmonary injuny induced by industrial exposure to high level of $NO_2$ during repair of $NO_2$ pipeline in a refinery. A 55-year-old man experienced nausea and severe dyspnea in 6 hours after $NO_2$ inhalation. Initial blood gas examination revealed severe hypoxemia accompanying increased alveolar-arterial O2 difference. Radiological examination showed diffuse ground glass opacities in both lung fields. Clinical symptoms and laboratory findings, including radiological study and pulmonary function test were improved with conservative treatment using inhaled oxygen and bronchodilator. and there was no evidence of bronchial fibrosis and bronchiolitis obliterance in chest high resolution computed tomography performed 6 weeks after exposure. Here, we report a case of $NO_2$ induced acute pulmonary injuny with a brief review of the relevant literature.

  • PDF

A Study on a Method of Making the Matrix far the Numerical Analysis of Underground Temperature (지하공간온도의 수치해석을 위한 행렬 구성방법에 관한 연구)

  • 정수일
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2001
  • It is often said that the supply of fossil fuels in use for energy source will last only for 40 years. Futhermore, statistics shows that most of the fuels are imported from outside and that 30-40% of total cost for housing in Korea. One of those methods for reducing the energy cost for housing is to use underground space. Being used well, it may bring a considerable saving of energy since the underground space keeps its air cool in summer and warm in winter. To use underground space, we need to analyse its temperature first. For this purpose, what is generally used is the numerical analysis with the use of nodal system. That is, we can calculate a specific underground temperature with the matrix of thermal resistance after we make a nodal system. However, the existing numerical analysis programs need usually high cost and require a computer with large capacity. So they are seldom used in practice. Considering such problems, this study seeks to find a method for making the matrix of thermal resistance operatable on PC level.

  • PDF

A Parametric Study on the Catalytic Combustion of Gaseous Methane, Ethane and Propane Fuels (메탄, 에탄 및 프로판 가스 연료의 촉매연소에 관한 매개변수 연구)

  • Jung, Min-Seung;Kim, Chong-Min;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.309-315
    • /
    • 2012
  • Catalytic combustion is generally accepted as one of the environmentally preferred alternatives for heat and power from fossil fuels, as it has the advantage of stable combustion under very lean conditions with such low emissions as UHC, CO, and NOx. In this work, therefore, comparative numerical studies on the catalytic combustion behaviors over Pd-based catalysts have been conducted with the gaseous $CH_4$, $C_2H_6$, and $C_3H_8$. In the following, after introducing the governing equations with 1D channel and Langmuir-Hinshelwood models, numerical investigations on the catalyst performance are conducted by changing such various parameters as inlet temperature, excess air ratio, and space velocity. The numerical results show that outlet temperature and conversion of $C_3H_8$ are highest among others because of its chemical structure and reactivity.

Mixotrophic Cultivation of a Native Cyanobacterium, Pseudanabaena mucicola GO0704, to Produce Phycobiliprotein and Biodiesel

  • Kim, Shin Myung;Bae, Eun Hee;Kim, Jee Young;Kang, Jae-Shin;Choi, Yoon-E
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1325-1334
    • /
    • 2022
  • Global warming has accelerated in recent decades due to the continuous consumption of petroleum-based fuels. Cyanobacteria-derived biofuels are a promising carbon-neutral alternative to fossil fuels that may help achieve a cleaner environment. Here, we propose an effective strategy based on the large-scale cultivation of a newly isolated cyanobacterial strain to produce phycobiliprotein and biodiesel, thus demonstrating the potential commercial applicability of the isolated microalgal strain. A native cyanobacterium was isolated from Goryeong, Korea, and identified as Pseudanabaena mucicola GO0704 through 16s RNA analysis. The potential exploitation of P. mucicola GO0704 was explored by analyzing several parameters for mixotrophic culture, and optimal growth was achieved through the addition of sodium acetate (1 g/l) to the BG-11 medium. Next, the cultures were scaled up to a stirred-tank bioreactor in mixotrophic conditions to maximize the productivity of biomass and metabolites. The biomass, phycobiliprotein, and fatty acids concentrations in sodium acetate-treated cells were enhanced, and the highest biodiesel productivity (8.1 mg/l/d) was achieved at 96 h. Finally, the properties of the fuel derived from P. mucicola GO0704 were estimated with converted biodiesels according to the composition of fatty acids. Most of the characteristics of the final product, except for the cloud point, were compliant with international biodiesel standards [ASTM 6761 (US) and EN 14214 (Europe)].

Biomass Gasification for Fuel Cell Combined-Heat-and-Power Systems (바이오매스 활용 연료전지 열병합발전시스템을 위한 연료화 공정)

  • Hong, Gi Hoon;Uhm, Sunghyun;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.335-342
    • /
    • 2022
  • In the agricultural sector where the fossil fuels are primary energy resources, the current global energy crisis together with the dissemination of smart farming has led to the new phase of energy pattern in which the electricity demand is growing faster particularly. Therefore, the fuel cell combined heat and power system, coupling the environmentally friendly fuel cell to biomass treatment and feeding, can be regarded as the most effective energy system in agriculture. In this mini-review, we discuss the R&D trend of the fuel cell combined heat and power system aimed at utilizing agricultural by-products as fuels and highlight the issues in terms of the process configuration and interconnection of individual processes.

The Impact of the Introduction of Hydrogen Energy into the Power Sector on the Economy and Energy (전력부문 수소에너지 도입의 경제 및 에너지부문 파급효과)

  • Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.502-507
    • /
    • 2016
  • The transition from a carbon economy based on fossil fuels to a hydrogen economy is necessary to ensure energy security and to combat climate change. In order to pursue the transition to a hydrogen economy while achieving sustainable economic growth, a preliminary study into the establishment of the necessary infrastructure for the future hydrogen economy needs to be carried out. This study addresses the economic and environmental interactions in a dynamic computable general equilibrium (CGE) model focusing on the economic effects of the introduction of renewable energy into the Korean energy system. Firstly, the introduction of hydrogen results in an increase in the investment in hydrogen production and the reduction of the production cost, ultimately leading to GDP growth. Secondly, the mandatory introduction of renewable energy and associated government subsidies bring about a reduction in total demand. Additionally, the mandatory introduction of hydrogen energy into the power sector helps to reduce CO2 emissions through the transition from a carbon economy-based on fossil energy to a hydrogen economy. This means that hydrogen energy needs to come from non-fossil fuel sources in order for greenhouse gases to be effectively reduced. Therefore, it seems necessary for policy support to be strengthened substantially and for additional studies to be conducted into the production of hydrogen energy from renewable sources.

[ $CO_2$ ] Sequestration in Geological Structures in the Maritime Area: A Preliminary Review (이산화탄소 해저 지질 구조 격리: 기술 현황과 제도 예비검토)

  • Hong, Gi-Hoon;Park, Chan-Ho;Kim, Han-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.203-212
    • /
    • 2005
  • Anthropogenic emissions of greenhouse gases, particularly carbon dioxide($CO_2$) which arises mainly as wastes from the fossil fuel burning processes, are causing global warming. The effects of global warming become increasingly felt all over the world including sea level rise and extreme weather. The more direct consequences of the elevated atmospheric $CO_2$ on the ocean is the acidification of the surface ocean which brings a far reaching adverse impact on the life at sea and probably on the whole ecosystem of the planet. Improvement in energy efficiency and use of alternative energy sources are being made to reduce $CO_2$ emissions. However, a rapid transition to alternatives seems unachievable within a few decades due to the constraints on the associated technology and socio-economic factors in the world, since fossil fuels make up approximately 85% of the world's commercial energy demands. It has now been recognized that capture and geological sequestration of $CO_2$ could significantly reduce its emissions from fossil fuel utilization and therefore provides the means to rapidly achieve large reductions in $CO_2$ emissions(excerpts from London Convention, LC/SG 28, 2005). In Korea, well-developed sedimentary basins are spread over the vast continental shelf and slope regions, whereas, the land is densely populated and limited in area. Consequently, the offshore area is preferred to the land for the sites for geological sequestration. The utilization of the offshore area, however, may be subject to international agreements including London Convention. In this paper, the recent trends in technologies and regulations for $CO_2$ capture and geological sequestration are described to encourage its applications in Korea.

  • PDF

A Study on Ventilation Characteristics in Fuel Preparation Room of Hydrogen Fueled Vessel (수소추진선박의 연료준비실내의 환기특성에 관한 연구)

  • Bo Rim Ryu;Phan Anh Duong;Quoc Huy Nguyen;Hokeun Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.158-159
    • /
    • 2022
  • Due to the climate crisis, various environmental regulations including greenhouse gas reduction are in effect. This is not limited to any specific industry sector, but is affecting the entire industry worldwide. For this reason, the IMO and governments of each country are announcing strategies and policies related to the shipbuilding and shipping industries. The current regulations can be partially resolved through additional facilities such as scrubbers while using existing fossil fuels, but ultimately, the emission of greenhouse gases such as CO2 from the exhaust gases generated by ships must be restricted through energy conversion. To this end, it is necessary to develop fuels that can replace traditional fuels such as oil and natural gas. Among them, hydrogen is attracting attention as a clean energy that does not emit pollutants when used as a fuel. However, hydrogen has a wide explosive range and a fast dispersion speed, so research on this is necessary. Therefore, in this paper, when hydrogen leakage occurs in the fuel preparation room of a hydrogen-powered ship, the trend was analyzed and the ventilation characteristics were investigated.

  • PDF