DOI QR코드

DOI QR Code

Modeling of Thermodynamic Properties of Saturated state Hydrogen using Equation of State

상태방정식을 이용한 포화상태 수소의 열역학적 물성 모델링

  • Bong-Seop Lee (Department of Chemical Engineering, Kangwon National University) ;
  • Hun Yong Shin (Department of Chemical and Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Choong Hee Joe (Hydrogen Product Research Department, Korea Gas Safety corporation)
  • 이봉섭 (강원대학교 화학공학과) ;
  • 신헌용 (서울과학기술대학교 화공생명공학과) ;
  • 조충희 (한국가스안전공사 수소제품연구부)
  • Received : 2023.07.24
  • Accepted : 2023.08.29
  • Published : 2023.11.01

Abstract

Fossil energy sources are limited in their sustainable use and expansion due to global warming caused by carbon dioxide emissions. Hydrogen is considered as a promising alternative to traditional fossil fuels. To ensure the stable long-term storage, it is necessary to accurately predict its thermodynamic properties at cryogenic temperatures. Therefore, this study aimed to investigate thermodynamic properties, such as saturated vapor pressure and density, enthalpy, and entropy of liquid and gas, using cubic equations of state that demonstrate relatively simple relationships. Among the three types of equations of state (Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), and Peng-Robinson (PR)), the SRK model exhibited relatively accurate prediction results for various physical properties.

탄화수소기반의 화석연료 에너지원은 이산화탄소 배출로 인한 지구온난화 문제로 지속적인 이용 및 확장에 제한이 있다. 수소는 전통적인 화석연료에 대한 유망한 대안으로 여겨지고 있다. 수소의 안정적인 장기저장을 위해서 극저온인 포화상태에서 수소의 열역학적 물성에 대한 예측이 요구된다. 따라서 본 연구에서는 비교적 간단한 관계식을 보이는 3차 상태방정식들을 이용하여 포화상태의 열역학적 물성들(포화증기압, 액체 및 기체의 밀도, 엔탈피 및 엔트로피)을 모사하였다. 포화상태 수소에 대한 여러가지 열역학적 물성들을 비교한 결과 3 종류(Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), Peng-Robinson (PR))의 상태방정식 중 SRK 모델이 비교적 정확한 예측결과를 보였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 한국에너지기술평가원(KETEP)의 연구비지원(연구개발 과제번호. 20227310100090)을 받아 수행한 연구 과제입니다.

References

  1. Arutyunov, V. S., "Hydrogen Energy: Significance, Sources, Problems, and Prospects (A Review)," Petroleum Chemistry, 62(6), 583-593(2022).  https://doi.org/10.1134/S0965544122040065
  2. Subramani, V., Basile, A. and Veziroglu, T. N., Compendium of Hydrogen Energy: Hydrogen Production and Purification., Woodhead Publishing(2015). 
  3. Morales-Ospino, R., Celzard, A. and Fierro, V., "Strategies to Recover and Minimize Boil-off Losses During Liquid Hydrogen Storage," Renewable and Sustainable Energy Reviews, 182, 113360(2023). 
  4. Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M. and Azad, A. K., "Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review," Energy Conversion and Management, 165, 602-627(2018).  https://doi.org/10.1016/j.enconman.2018.03.088
  5. Abdin, Z., Zafaranloo, A. Rafiee, A., Merida, W., Lipinski, W. and Khalilpour, K. R., "Hydrogen as an Energy Vector," Renewable and Sustainable Energy Reviews, 120, 109620(2020). 
  6. Ustolin, F., Paltrinieri, N. and Berto, F., "Loss of Integrity of Hydrogen Technologies: A Critical Review," International Journal of Hydrogen Energy, 45(43), 23809-23840(2020).  https://doi.org/10.1016/j.ijhydene.2020.06.021
  7. Khurana, T. K., Prasad, B. V. S. S. S., Ramamurthi, K. and Murthy, S., "Thermal Stratification in Ribbed Liquid Hydrogen Storage Tanks," International Journal of Hydrogen Energy, 31(15), 2299-2309(2006).  https://doi.org/10.1016/j.ijhydene.2006.02.032
  8. Smith, J. R., Gkantonas, S. and Mastorakos, E., "Modelling of Boil-off and Sloshing Relevant to Future Liquid Hydrogen Carriers," Energies, 15(6), 2046(2022). 
  9. Park, B. H., "Calculation and Comparison of Thermodynamic Properties of Hydrogen Using Equations of State for Compressed Hydrogen Storage," Transactions of the Korean Hydrogen and New Energy Society, 31(2), 184-193(2020).  https://doi.org/10.7316/KHNES.2020.31.2.184
  10. Redlich, O. and Kwong, J. N. S., "On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions," Chemical Reviews, 44(1), 233-244(1949).  https://doi.org/10.1021/cr60137a013
  11. Soave, G., "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," Chemical Engineering Science, 27(6), 1197-1203(1972).  https://doi.org/10.1016/0009-2509(72)80096-4
  12. Peng, D.-Y. and Robinson, D. B., "A New Two-Constant Equation of State," Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64(1976).  https://doi.org/10.1021/i160057a011
  13. Nasrifar, K., "Comparative Study of Eleven Equations of State in Predicting the Thermodynamic Properties of Hydrogen," International Journal of Hydrogen Energy, 35(8), 3802-3811(2010).  https://doi.org/10.1016/j.ijhydene.2010.01.032
  14. Mathias, P. M. and Copeman, T. W., "Extension of the Peng-Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept," Fluid Phase Equilibria, 13, 91-108(1983).  https://doi.org/10.1016/0378-3812(83)80084-3
  15. Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V. and Tassios, D. P., "An Equation of State for Associating Fluids," Industrial & Engineering Chemistry Research, 35(11), 4310-4318(1996).  https://doi.org/10.1021/ie9600203
  16. Chapman, W. G., Gubbins, K. E., Jackson, G. and Radosz, M., "SAFT: Equation-of-state Solution Model for Associating Fluids," Fluid Phase Equilibria, 52, 31-38(1989).  https://doi.org/10.1016/0378-3812(89)80308-5
  17. Smith, J. M., Van Ness, H. C., Abbott, M. M. and Swihart, M. T., Introduction to Chemical Engineering Thermodynamics. 9th ed., McGraw-Hill Singapore(2022). 
  18. Leachman, J. W., Jacobsen, R. T., Penoncello, S. G. and Lemmon, E. W., "Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen," J. Phys. Chem. Ref. Data, 38(3), 721-748(2009). https://doi.org/10.1063/1.3160306