• Title/Summary/Keyword: Fossil Power Plant

Search Result 217, Processing Time 0.022 seconds

An Application of Optimization method for Efficient Operation of Micro Grid (마이크로그리드의 효율적 운영을 위한 최적화기법의 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.50-55
    • /
    • 2012
  • This paper presents an application of optimization method for efficient operation in micro grid. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The cost function of fuel cell plant considers the efficiency of fuel cell. Particle swarm optimization(PSO) and sequential quadratic programming(SQP) are used for solving the problem of microgrid system operation. Also, from the results this paper presents the way to attend power markets which can buy and sell power from upper lever grids by connecting a various generation resources to micro grid.

Biomass Gasification for Fuel Cell Combined-Heat-and-Power Systems (바이오매스 활용 연료전지 열병합발전시스템을 위한 연료화 공정)

  • Hong, Gi Hoon;Uhm, Sunghyun;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.335-342
    • /
    • 2022
  • In the agricultural sector where the fossil fuels are primary energy resources, the current global energy crisis together with the dissemination of smart farming has led to the new phase of energy pattern in which the electricity demand is growing faster particularly. Therefore, the fuel cell combined heat and power system, coupling the environmentally friendly fuel cell to biomass treatment and feeding, can be regarded as the most effective energy system in agriculture. In this mini-review, we discuss the R&D trend of the fuel cell combined heat and power system aimed at utilizing agricultural by-products as fuels and highlight the issues in terms of the process configuration and interconnection of individual processes.

Polycyclic Aromatic Hydrocarbons(PAHs) in Sediment and Mussels(Mytilus edulis) from the Intertidal Zone of Kori Nuclear Power Plant, Korea (고리원자력발전소 인근 조간대에 서식하는 퇴적물과 진주담치에 포함된 다환방향족 탄화수소(PAHs))

  • Il, Noh;Ki-Seok, Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.47-58
    • /
    • 1999
  • Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in coastal marine environment. PAHs enter estuarine and nearshore marine environment via several routes such as combustion of fossil fuels, domestic and industrial effluents and oil spills. In August of 1997, sediment and mussels (Mytilus edulis) were collected at 6 sites near Kori nuclear power plant in order to analyze the PAH content by HPLC with uv/vis detection. The concentrations of 15 PAH in sediment ranged from < 1 to 5,900 ppb ( mean 173.5$\pm$99.7 ppb), and in mussels, from < 0.5 to 4,125 ppb (mean 105$\pm$60.5 ppb). Compared with other studies world over, the concentrations of carcinogenic PAHs were relatively low in both sediment and mussels from the intertidal zone of Kori. This study presents preliminary data for the PAH levels in sediment and mussels from the intertidal zone of Kori, and the data will hopefully be utilized for the assessment of oil pollution in the Southeast East Sea, Korea (especially for the PAHs).

  • PDF

Optimization of the Gas-Gas Heater Element for Desulfurization Equipment through Fluid Analysis of considering Deposition Particles (침적 입자를 고려한 유동해석을 통한 신형 탈황설비용 GGH 요소 최적화)

  • Oh, B.J.;Ryu, B.J.;Lee, Y.S.;Kim, J.H.;Baek, S.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.611-619
    • /
    • 2010
  • The paper deals with the proper design of GGH(gas-gas heater) panel elements of desulfurization equipments in a thermoelectric power plant. When fossil fuels such as coal, petroleum et cetera are burnt to ashes, sulfur oxide compounds are produced, and calcareous sludges are deposited at GGH panel elements. In this case, operation of a power plant equipments is interrupted, and a tremendous economic loss comes into existence. One of the purposes of the paper is to find flow velocity distributions and regions of depositions when calcareous sludges pile up on the GGH panel elements through the fluid analysis. In the fluid analysis, flow velocity and position distributions of particles between GGH panel elements are demonstrated according to time variation for ammonia and calcium hydroxide particles.

A study on a power plant using Dye-sensitized solar cells in low light environments (저조도 환경에서의 염료감응형 태양전지를 활용한 발전소자에 관한 연구)

  • Kim, Sun-Geum;Baek, Sung-June
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • Recently, attention has been focused on renewable energy and carbon neutrality to resolve fossil energy depletion and environmental problems. In addition, high-rise urban buildings and an increase in building energy are rapidly increasing. There are many restrictions on installing solar power in urban areas. In addition, as buildings become taller, a lot of low-light environments in which shade is formed occur. Therefore, in this study, we intend to develop a power plant capable of generating electric power in an outdoor low-light environment and indoor lighting environment. The power plant in a low-light environment used a dye-sensitized solar cell. A unit cell and a 20cm×20cm module were manufactured, and the electrical characteristics of the power plant were measured using light sources of LED, halogen lamp, and 3-wavelength lamp. The photoelectric conversion efficiency of the unit cell was 17.2%, 1.28%, 19,2% for each LED, halogen lamp, and 3-wavelength lamp, and the photoelectric conversion efficiency of the 20cm×20cm module was 10.9%, 8.7%, and 11.8%, respectively. In addition, the maximum power value of the module was 13.1mW, 15.7 mW, and 14.2 mW for each light source, respectively, confirming the possibility of power generation in a low-light environment

Calculation of CO2 Emission w.r.t. Instantaneous Generator Output using Input-output Coefficients of Thermal Power Plant (화력발전소 입출력 특성계수를 이용한 순시 발전출력 대비 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Lim, Jeong-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.120-125
    • /
    • 2007
  • Burning the fossil fuel in the thermal power plants causes green house gas emission. Monitoring of CO2 emission of the thermal power plants is growing more important because the amount produced by them is more than 20 percent of national total emission. This paper proposes a method to calculate the amount of the CO2 emission w.r.t. generator[MW] output using the input-output coefficients of the thermal power plants. The power flow computation together with the CO2 emission calculation are demonstrated in a sample power system.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

A study on Design of Capacity for Landing and Floating Solar Power Plant : The Case of Chonnam Province in Korea (육상 및 수상태양광 용량설계에 관한 연구 : 전남사례를 중심으로)

  • Lee, Sook-Hee;Moon, Chae-Joo;Chang, Young-Hak;Jung, Moon-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.35-44
    • /
    • 2018
  • Korea government aims to generate 20 percent of its electricity with clean, renewable energy by 2030, while reducing its reliance on fossil fuel and nuclear power plants. Technically, solar energy has resource potential that far exceeds the entire global energy demand. Solar energy industry has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies for renewable energy development and utilization. Even though solar power generation has several advantages over other forms of electricity generation, the major problem is the requirement of land which is scarcely available in the local site and its cost. This study analyzes the available capacity of landing and floating solar plants for the case of chonnam province in korea. The results of design capacity show about 7.5GW for landing and 1.5GW for floating solar power plant. Also, with a purpose to comprehend intention-behaviour gap about acceptance of solar community, the solutions are suggested.

Feasibility Study for Tidal Power Plant Site in Garolim Bay Using EFDC Model (EFDC모형을 이용한 가로림만의 조력발전 위치 타당성 검토)

  • Shin, Bum-Shick;Kim, Kyu-Han;Kim, Jong-Hyun;Baek, Seung-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.489-495
    • /
    • 2011
  • Fossil fuel energy has become a worldwide environmental issue due to its effect on global warming and depletion in its supply. Therefore, the interest in developing alternative energy source has been rising. Ocean energy, especially, has gained strength as an alternative energy source for its unlimited supply with low secondary risks. Among all the ocean energy, the west coast of Korea holds the field of large-scale energy development because of its distinctive tidal range. Tidal power plant construction at the sea may expedite multi development effects such as bridge roles, tourism resource effects and adjustability of flood inundation at the inner bay. This study introduces the validity of tidal power plant construction at Garilim Bay in west coast of Korea by examining anticipated hydraulic characteristics using EFDC model. Through EFDC numerical simulations, the feasibility of Garolim Bay as a tidal power plant field has been proved. And the most effective tidal power plant construction would be to install hydraulic turbine in the west side of bay entrance where ebb current is stronger, and install water gate in the east side of bay entrance where the flood current is superior.

Development of 100kW Grid-Connected PCS for Vanadium Redox flow Battery (바나듐 레독스 플로우 전지용 100kW급 계통연계형 PCS 개발)

  • Choi, Eun-Sik;Lee, Chung-Woo;Ryu, Kang-Yeul;Kang, Byung-Kwan;Oh, Seung-Hun;Lee, Yun-Jae;Koh, Kwang-Soo;Kim, Hee-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.115-116
    • /
    • 2013
  • Recently environmental problems such as greenhouse gas emissions has become a global problem. As a result, the current that can be easily used to Petroleum and coal reserves of fossil energy and environmental issues, coupled with the limitations of this finding for renewable energy to replace the movement is spreading around the world. Among them Energy Storage System with secondary battery technology has been increased interest in, Redox flow batteries, unlike the conventional theory, the life of the rechargeable battery almost no restrictions existing lithium-ion batteries 10 times more than the life of the road. In this paper, power plant or power system, installed in a building that can cope with the rapid increase in demand for power redox flow battery for 100kW PCS will be introduced.

  • PDF