DOI QR코드

DOI QR Code

A study on a power plant using Dye-sensitized solar cells in low light environments

저조도 환경에서의 염료감응형 태양전지를 활용한 발전소자에 관한 연구

  • Kim, Sun-Geum (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Baek, Sung-June (School of Electronics and Computer Engineering, Chonnam National University)
  • Received : 2021.05.11
  • Accepted : 2021.06.15
  • Published : 2021.06.30

Abstract

Recently, attention has been focused on renewable energy and carbon neutrality to resolve fossil energy depletion and environmental problems. In addition, high-rise urban buildings and an increase in building energy are rapidly increasing. There are many restrictions on installing solar power in urban areas. In addition, as buildings become taller, a lot of low-light environments in which shade is formed occur. Therefore, in this study, we intend to develop a power plant capable of generating electric power in an outdoor low-light environment and indoor lighting environment. The power plant in a low-light environment used a dye-sensitized solar cell. A unit cell and a 20cm×20cm module were manufactured, and the electrical characteristics of the power plant were measured using light sources of LED, halogen lamp, and 3-wavelength lamp. The photoelectric conversion efficiency of the unit cell was 17.2%, 1.28%, 19,2% for each LED, halogen lamp, and 3-wavelength lamp, and the photoelectric conversion efficiency of the 20cm×20cm module was 10.9%, 8.7%, and 11.8%, respectively. In addition, the maximum power value of the module was 13.1mW, 15.7 mW, and 14.2 mW for each light source, respectively, confirming the possibility of power generation in a low-light environment

최근 화석에너지 고갈 및 환경 문제 해결을 위하여 신재생에너지와 탄소중립에 관한 관심이 집중되고 있다. 또한, 도시 건물의 고층화와 건물의 증가에 따른 건물에너지의 증가가 급속하게 되고 있다. 도시의 중심에 신재셍에너지원인 태양광 발전을 설치하는데 있어서 많은 제약사항이 있으며, 건물의 고층화가 됨에 따라 그늘이 형성되는 저조도 환경이 많이 발생하게 된다. 따라서 본 연구에서는 실외의 저조도 환경 및 실내의 조명 환경에서 전력발생이 가능한 발전소자를 개발하고자 한다. 저조도 환경에서의 발전소자는 태양전지의 종류중에 하나인 염료감응형 태양전지를 활용하고자 한다. 염료감응형 태양전지의 단위셀과 20cm×20cm 모듈을 제작하였고, LED, 할로겐램프, 3파장 램프의 광원을 활용하여 발전소자의 전기적 특성을 측정하였다. 단위셀의 광전변환효율은 LED, 할로겐 램프, 3파장 램프별로 17.2%, 1.28%, 19,2%로의 결과를 나타냈으며 20cm×20cm 모듈의 광전변환효율은 각각 10.9%, 8.7%, 11.8%의 결과를 나타내었다. 또한 모듈의 최대전력값은 광원별로 각각 13.1mW, 15.7 mW, 14.2 mW로서 저조도 환경에서 발전 가능성을 확인하였다.

Keywords

References

  1. G. Apostolou, A. Reinders, M. Verwaal, "Comparison of the indoor performance of 12 commercial PV products by a simple model," Energy Sci. Eng. Vol.4, pp.69-85, 2016. DOI: 10.1002/ese3.110
  2. J. S. Goo, S.-C. Shin, Y.-J. You, J. W. Shim, "Polymer surface modification to optimize inverted organic photovoltaic devices under indoor light conditions," Solar Energy Materials and Solar Cells, Vol.184, pp.31-37, 2018. DOI: 10.1016/j.solmat.2018.04.023
  3. K. Warmerdam, A. Pandharipande, D. Caicedo, "In Connectivity in IoT indoor lighting systems with visible light communications," IEEE Online Conference on Green Communications, pp.47-52, 2015. DOI: 10.1109/OnlineGreenCom.2015.7387378
  4. Francesca D. R. Tadeo P. Thomas M. B. "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Appl. Energy, Vol.156, pp.413-422, 2015. DOI: 10.1016/j.apenergy.2015.07.031
  5. Freitag, M., Teuscher, J., Saygili, Y. el, "Dyesensitized solar cells for efficient power generation under ambient lighting," Nature photonics, Vol.11, pp.372-378, 2017. https://doi.org/10.1038/nphoton.2017.60
  6. Meng Li, Chao Ahao, Ahao-kuo Wang, el. "Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells," Adv. Energy Materials, Vol.8, pp.1801509, 2018. DOI: 10.1002/aenm.201801509
  7. J. S. Goo, J. H. Lee, S. C. Shin, J. S. Park and J. W. Shim "Undoped ZnO electrodes for low-cost indoor organic photovoltaics," J. Materials Chemistry A, Vol.46, pp.23464-23472, 2018.
  8. Y. Cao, Y. Liu, S. M. Zakeeruddin, A. Hagfeldt, M. Gratzel "Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics," Joule, Vol.2, pp.1108-1117, 2018. DOI: 10.1016/j.joule.2018.03.017
  9. Juan Bisqurt, "Physical lectrochemistry of nanostructured devices," Physical Chemistry Chemical Physics, Vol.10, pp.49-72, 2008. https://doi.org/10.1039/B709316K
  10. Y. Yang, "Recent research progress on polymer electrolytes for dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol.93, pp.1167-1175, 2009. DOI: 10.1016/j.solmat.2009.01.009
  11. Qifeng Zhang, Christopher S. Dandeneau, Xiaoyuan Zhou and Guozhong Cao, "ZnO Nanostructures for Dye-Sensitized Solar Cells," Advanced materials, Vol.21, No.41, pp.4087-4108, 2009. DOI: 10.1002/adma.200803827
  12. H. Zhu, J. Wei, K. Wang, and D. Wu, "Applications of carbon materials in photovoltaic solar cells," Solar Energy Materials and Solar Cells, Vo.l93, pp.1461-1470, 2009. DOI: 10.1016/j.solmat.2009.04.006