• Title/Summary/Keyword: Forward equation

Search Result 216, Processing Time 0.028 seconds

The inverse kinematics and redundancy of reclaimers (불출기의 여유자유도와 역기구학 해)

  • Shin, Ki-Tae;Choi, Chin-Thoi;Lee, Kwan-Hee;Ahn, Hyun-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.469-475
    • /
    • 1997
  • A method for solving the inverse kinematic problem of reclaimer is presented in this paper. The reclaimers in the raw yard are being used to dig raws and transfer them to the blast furnaces. The kinematic configuration of the reclaimer is different from that of commercially available robots, because it has a rotating disk with several buckets at the end of the boom to dig raws. The reclaimer has a redundancy due to the rotating disk : the degrees of freedom are greater than the number of forward kinematic equations. A plane equation in the 3-dimensional space is determined by using several points adjacent to the reclaiming point of the raw ores pile. A constraint is obtained from the relation ship of the plane equation and trajectories of the bucket of the reclaimer. Finally, a solution of the inverse kinematics of the reclaimer is determined by a numerical method.

  • PDF

A Frozen Time Receding Horizon Control for a Linear Discrete Time-Varying System (선형 이산 시변시스템을 위한 고정시간 이동구간 제어)

  • Oh, Myung-Hwan;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • In the case of a linear time-varying system, it is difficult to apply the conventional stability conditions of RHC (Receding Horizon Control) to real physical systems because of computational complexity comes from time-varying system and backward Riccati equation. Therefore, in this study, a frozen time RHC for a linear discrete time-varying system is proposed. Since the proposed control law is obtained by time-invariant Riccati equation solved by forward iterations at each control time, its stability can be ensured by matrix inequality condition and the stability condition based on horizon for a time-invariant system, and they can be applied to real physical systems effectively in comparison with the conventional RHC.

2.5 Dimensional Electromagnetic Finite Element Numerical modeling using linear conductivity variation (선형적 물성변화를 고려하는 유한요소법을 이용한 2.5차원 전자탐사 수치모델링)

  • Ko, Kwang-Beom;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.131-138
    • /
    • 1998
  • Numerical modeling for electromagnetic exploration methods are essential to understand behaviours of electromagnetic fields in complex subsurfaces. In this study, a finite element method was adopted as a numerical scheme for the 2.5-dimensional forward problem. And a finite element equation considering linear conductivity variation was proposed when 2.5-dimensional differential equation to couple eletric and magnetic field was implemented. Model parameters were investigated for near-field with large source effects and far-field with responses dominantly by homogeneous half-space. Numerical responses by this study were compared with analytic solutions in homogeneous half-space and compared with other three dimensional numerical results.

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

A Study of Three Dimensional Numerical Analysis on Vacuum Consolidation

  • Chung, Youn ln
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.5-20
    • /
    • 1997
  • A governing equation of uncoupled three dimensional finite strain theory of consolidation is presented. This equation is suitable for relatively thick layers, possessing large strain, non-linear material property, and variable permeability. A special numerical solution procedure has to be adopted for the finite difference scheme because the solution is not stable in using Forward-Time Centered-Space (FTCS) method and the governing equation is highly non-linear. The solution is capable of predicting settlement with respect to time. The results predicted by the developed method of analysis have been compared with those of experimental tests on different types of highly compressible soils with vertical wick drain. The uncoupled three dimensional finite strain theory of consolidation appears to predict settlement behavior well. A detailed comparison shows good agreement in terms of total settlement, and reasonable agreement with respect to time.

  • PDF

2.5-Dimensional Electromagnetic Numerical Modeling and Inversion (2.5차원 전자탐사 수치모델링 및 역해)

  • Ko Kwang-Beom;Suh Jung-Hee;Shin Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • Numerical modeling and inversion for electromagnetic exploration methods are essential to understand behaviour of electromagnetic fields in complex subsurface. In this study, a finite element method was adopted as a numerical scheme for the 2.5-dimensional forward problem. And a finite element equation considering linear conductivity variation was proposed, when 2.5-dimensional differential equation to couple eletric and magnetic field was implemented. Model parameters were investigated for near-field with large source effects and far-field with responses dominantly by homogeneous half-space. Numerical responses by this study were compared with analytic solutions in homogeneous half-space. Blocky inversion model was modified to be applied to the forward calculation in this study and it was also adopted in the inversion algorithm. Resolution for isolated bodies were investigated to confirm possibility and limitation of inversion for electromagnetic exploration data.

  • PDF

Sample Size Calculations with Dropouts in Clinical Trials (임상시험에서 중도탈락을 고려한 표본크기의 결정)

  • Lee, Ki-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.353-365
    • /
    • 2008
  • The sample size in a clinical trial is determined by the hypothesis, the variance of observations, the effect size, the power and the significance level. Dropouts in clinical trials are inevitable, so we need to consider dropouts on the determination of sample size. It is common that some proportion corresponding to the expected dropout rate would be added to the sample size calculated from a mathematical equation. This paper proposes new equations for calculating sample size dealing with dropouts. Since we observe data longitudinally in most clinical trials, we can use a last observation to impute for missing one in the intention to treat (ITT) trials, and this technique is called last observation carried forward(LOCF). But LOCF might make deviations on the assumed variance and effect size, so that we could not guarantee the power of test with the sample size obtained from the existing equation. This study suggests the formulas for sample size involving information about dropouts and shows the properties of the proposed method in testing equality of means.

Reverse-time migration using the Poynting vector (포인팅 벡터를 이용한 역시간 구조보정)

  • Yoon, Kwang-Jin;Marfurt, Kurt J.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.102-107
    • /
    • 2006
  • Recently, rapid developments in computer hardware have enabled reverse-time migration to be applied to various production imaging problems. As a wave-equation technique using the two-way wave equation, reverse-time migration can handle not only multi-path arrivals but also steep dips and overturned reflections. However, reverse-time migration causes unwanted artefacts, which arise from the two-way characteristics of the hyperbolic wave equation. Zero-lag cross correlation with diving waves, head waves and back-scattered waves result in spurious artefacts. These strong artefacts have the common feature that the correlating forward and backward wavefields propagate in almost the opposite direction to each other at each correlation point. This is because the ray paths of the forward and backward wavefields are almost identical. In this paper, we present several tactics to avoid artefacts in shot-domain reverse-time migration. Simple muting of a shot gather before migration, or wavefront migration which performs correlation only within a time window following first arriving travel times, are useful in suppressing artefacts. Calculating the wave propagation direction from the Poynting vector gives rise to a new imaging condition, which can eliminate strong artefacts and can produce common image gathers in the reflection angle domain.

Numerical result of complex quick time behavior of viscoelastic fluids in flow domains with traction boundaries

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.211-219
    • /
    • 2007
  • Here we demonstrate complex transient behavior of viscoelastic liquid described numerically with the Leonov model in straight and contraction channel flow domains. Finite element and implicit Euler time integration methods are employed for spatial discretization and time marching. In order to stabilize the computational procedure, the tensor-logarithmic formulation of the constitutive equation with SUPG and DEVSS algorithms is implemented. For completeness of numerical formulation, the so called traction boundaries are assigned for flow inlet and outlet boundaries. At the inlet, finite traction force in the flow direction with stress free condition is allocated whereas the traction free boundary is assigned at the outlet. The numerical result has illustrated severe forward-backward fluctuations of overall flow rate in inertial straight channel flow ultimately followed by steady state of forward flow. When the flow reversal occurs, the flow patterns exhibit quite complicated time variation of streamlines. In the inertialess flow, it takes much more time to reach the steady state in the contraction flow than in the straight pipe flow. Even in the inertialess case during startup contraction flow, quite distinctly altering flow patterns with the lapse of time have been observed such as appearing and vanishing of lip vortices, coexistence of multiple vortices at the contraction comer and their merging into one.

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.