• 제목/요약/키워드: Forward Blocking voltage

검색결과 41건 처리시간 0.037초

A Novel Trench Electrode BRT with the Intrinsic Region for Power Electronics

  • Kang, Ey-Goo;Oh, Dae-Suk;Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1038-1041
    • /
    • 2002
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effect and forward blocking voltage more than the conventional BRT Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power device and applicate to another power device including IGBT, EST and etc,

  • PDF

Static Induction Transistor의 순방향 블로킹 특성 개선에 관한 연구 (A Study on the Improvement of Forward Blocking Characteristics in the Static Induction Transistor)

  • 김제윤;정민철;윤지영;김상식;성만영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.292-295
    • /
    • 2004
  • The SIT was introduced by Nishizawa. in 1972. When compared with high-voltage, power bipolar junction transistors, SITs have several advantages as power switching devices. They have a higher input impedance than do bipolar transistors and a negative temperature coefficient for the drain current that prevents thermal runaway, thus allowing the coupling of many devices in parallel to increase the current handling capability. Furthermore, the SIT is majority carrier device with a higher inherent switching speed because of the absence of minority carrier recombination, which limits the speed of bipolar transistors. This also eliminates the stringent lifetime control requirements that are essential during the fabrication of high-speed bipolar transistors. This results in a much larger safe operating area(SOA) in comparison to bipolar transistors. In this paper, vertical SIT structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. A trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. The proposed devices have superior electrical characteristics when compared to conventional device. Consequently, the fabrication of trench oxide power SIT with superior stability and electrical characteristics is simplified.

  • PDF

고전압 GCT(Gate Commutated Thyristor) 소자 설계 (A Novel Design for High Voltage RC-GCTs)

  • 장창리;김상철;김은동;김형우;서길수;김남균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.312-315
    • /
    • 2003
  • Basic design of RC-GCTs (Reserve-Conducting Gate-Commutated Thyristors) by novel punch-through (PT) concept with 5,500v rated voltage is described here. A PT and NPT (non punch-through) concept for the same blocking voltage has been compared in detail. The simulation work indicates that GCT with such PT design exhibits that the forward breakdown voltage is 6,400V which is enough for supporting 5500V blocking. Additionally, the real IGCT turn-off in the mode of PNP transistor has been realized. However, the carrier extraction from N-base to gate terminal will be drastic slowly in terms of NPT structure except for the high on-state voltage drop.

  • PDF

스마트 파워 IC를 위한 $p^{+}$ Diverter 구조의 횡형 트랜치 IGBT (A Latch-Up Immunized Lateral Trench IGBT with $p^{+}$ Diverter Structure for Smart Power IC)

  • 문승현;강이구;성만영;김상식
    • 한국전기전자재료학회논문지
    • /
    • 제14권7호
    • /
    • pp.546-550
    • /
    • 2001
  • A new Lateral Trench Insulated Gate Bipolar Transistor(LTIGBT) with p$^{+}$ diverter was proposed to improve the characteristics of the conventional LTIGBT. The forward blocking voltage of the proposed LTIGBT with p$^{+}$ diverter was about 140V. That of the conventional LTIGBT of the same size was 105V. Because the p$^{+}$ diverter region of the proposed device was enclosed trench oxide layer, he electric field moved toward trench-oxide layer, and punch through breakdown of LTIGBT with p$^{+}$ diverter was occurred, lately. Therefore, the p$^{+}$ diverter of the proposed LTIGBT didn't relate to breakdown voltage in a different way the conventional LTIGBT. The Latch-up current densities of the conventional LTIGBT and proposed LTIGBT were 540A/$\textrm{cm}^2$, and 1453A/$\textrm{cm}^2$, respectively. The enhanced latch-up capability of the proposed LTIGBT was obtained through holes in the current directly reaching the cathode via the p$^{+}$ divert region and p$^{+}$ cathode layer beneath n$^{+}$ cathode layer./ cathode layer.

  • PDF

수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor (An Emitter Switched Thyristor with vertical series MOSFET structure)

  • 김대원;김대종;성만영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

스마트 파워 IC를 위한 향상된 전기특성의 소규모 횡형 트랜치 IGBT (A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC)

  • 문승현;강이구;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.267-270
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10$\mu\textrm{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sifted conventional LTIGBT and the conventional LTIGBT which has the width of 17$\mu\textrm{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17$\mu\textrm{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field in the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC

  • Moon, Seung Hyun;Kang, Ey Goo;Sung, Man Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권4호
    • /
    • pp.15-18
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10 ${\mu}{\textrm}{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sized conventional LTIGBT arid the conventional LTIGBT which has the width of 17 ${\mu}{\textrm}{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17 ${\mu}{\textrm}{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field In the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

Trapezoid mesa와 Half Sidewall Technique을 이용한 4H-SiC Trench MOS Barrier Schottky(TMBS) Rectifier (A 4H-SiC Trench MOS Barrier Schottky (TMBS) Rectifier using the trapezoid mesa and the upper half of sidewall)

  • 김병수;김광수
    • 전기전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.428-433
    • /
    • 2013
  • 본 논문에서는 전력반도체 소자의 재료로써 주목받고 있는 탄화규소 기반의 Trench MOS Barrier Schottky(TMBS)의 순방향 및 역방향 특성을 개선시키기 위한 구조를 제안한다. 순방향 전압강하와 역방향 항복전압을 개선시키기 위하여 사다리꼴 mesa 구조와 trench sidewall의 길이를 조절하는 기법을 사용하는 4H-SiC TMBS 정류기를 제안하고 있다. 제안된 구조는 사다리꼴 mesa 구조를 적용하여 trench sidewall에 경사를 줌으로써 1508V의 역방향 항복전압을 얻었다. 이것은 기존의 4H-SiC TMBS 정류기에 비하여 역방향 항복전압을 11% 개선시켰음을 나타낸다. 또한 trench sidewall 상단의 길이를 조절하여 순방향 전류 $200A/cm^2$에 대하여 12% 감소된 1.6V의 순방향 전압강하를 얻었다. 제안된 소자는 Silvaco사의 T-CAD를 사용하여 전기적 특성을 분석하였다.

트랜치 에미터 전극을 이용한 수직형 NPI 트랜치 게이트 IGBT의 전기적 특성 향상 연구 (Improvement of Electrical Characteristics of Vertical NPT Trench Gate IGBT using Trench Emitter Electrode)

  • 이종석;강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제19권10호
    • /
    • pp.912-917
    • /
    • 2006
  • In this paper, Trench emitter electrode IGBT structure is proposed and studied numerically using the device simulator, MEDICI. The breakdown voltage, on-state voltage drop, latch up current density and turn-off time of the proposed structure are compared with those of the conventional trench gate IGBT(TIGBT) structures. Enhancement of the breakdown voltage by 19 % is obtained in the proposed structure due to dispersion of electric field at the edge of the bottom trench gate by trench emitter electrode. In addition, the on-state voltage drop and the latch up current density are improved by 25 %, 16 % respectively. However increase of turn-off time in proposed structures are negligible.

탄화규소 (4H-SiC) 기반 패키지 된 2kV PiN 파워 다이오드 제작과 전기적 특성 분석 (The Fabrication of Packaged 4H-SiC 2kV power PiN diode and Its Electrical Characterization)

  • 송재열;강인호;방욱;주성재;김상철;김남균;이용재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.67-68
    • /
    • 2008
  • In this study we have developed a packaged silicon carbide power diode with blocking voltage of 2kV. PiN diodes with 7 field limiting rings (FLRs) as an edge termination were fabricated on a 4H-SiC wafer with $30{\mu}m$-thick n-epilayer with donor concentration of $1.6\times10^{15}cm^{-3}$. From packaged PiN diode testing, we obtained reverse blocking voltage of 2kV, forward voltage drop of 4.35V at 100A/$cm^2$, on-resistance of $6.6m{\Omega}cm^2$, and about 8 nanosec reverse recovery time. These properties give a potential for the power system application.

  • PDF