• Title/Summary/Keyword: Formulation optimization

Search Result 536, Processing Time 0.024 seconds

Topological Structural Optimization under Multiple-Loading Conditions (Multiple-loading condition을 고려한 구조체의 위상학적 최적화)

  • 박재형;홍순조;이리형
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.179-186
    • /
    • 1996
  • A simple nonlinear programming(NLP) formulation for the optimal topology problem of structures is developed and examined. The NLP formulation is general, and can handle arbitrary objective functions and arbitrary stress, displacement constraints under multiple loading conditions. The formulation is based on simultaneous analysis and design approach to avoid stiffness matrix singularity resulting from zero sizing variables. By embedding the equilibrium equations as equality constraints in the nonlinear programming problem, we avoid constructing and factoring a system stiffness matrix, and hence avoid its singularity. The examples demonstrate that the formulation is effective for finding an optimal solution, and shown to be robust under a variety of constraints.

  • PDF

Optimizing the Novel Formulation of Liposome-Polycation-DNA Complexes (LPD) by Central Composite Design

  • Sun, Xun;Zhang, Zhirong
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.797-805
    • /
    • 2004
  • LPD vectors are non-viral vehicles for gene delivery comprised of polycation-condensed plasmid DNA and liposomes. Here, we described a novel anionic LPD formulation containing protamine-DNA complexes and pH sensitive liposomes composed of DOPE and cholesteryl hemisuccinate (Chems). Central composite design (CCD) was employed to optimize stable LPD formulation with small particle size. A three factor, five-level CCD design was used for the optimization procedure, with the weight ratio of protamine/DNA ($X_1$), the weight ratio of Chems/DNA ($X_2$) and the molar ratio of Chems/DOPE in the anionic liposomes ($X_3$) as the independent variables. LPD size ($Y_1$) and LPD protection efficiency against nuclease ($Y_2$) were response variables. Zeta potential determination was utilized to define the experimental design region. Based on experimental design, responses for the 15 formulations were obtained. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The mathematical model predicted optimized $X_1-X_3$ levels that achieve the desired particle size and the protection efficiency against nuclease. According to these levels, an optimized LPD formulation was prepared, resulting in a particle size of 185.3 nm and protection efficiency of 80.22%.

UNIK-OPT를 이용한 지식과 최적화 모형의 관리 - 정유산업사례

  • 김민용;이재규
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.109-118
    • /
    • 1993
  • This paper describes the management of knowledge base and optimization models using knowledge-assisted optimization model formulation system UNIK-OPT (UNIfied Knowledge-OPTimization). We will illustrate UNIK-OPT with the case of production scheduling in refinery.

  • PDF

Reliability Based Design Optimization of the Flexible Wing (유연 날개의 확률기반 최적 설계)

  • Lee Jaehun;Kim Suwhan;Kwon Jmg Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • In this study, the reliablility based design optimization is peformed for an aircraft wing. The flexiblility of the wing was assumed by considering the interaction modeled by static aeroelasticity between aerodynamic forces and the structure. For a multidisciplinary design optimization the results of aerodynamic analysis and structural analysis were included in the optimization formulation. The First Order Reliability Method(FORM) was employed to consider the uncertainty of the designed points.

  • PDF

Control Effects of Micromonospora sp. AW050027 by Media Optimization and Microbial Treatment Against Pine Wood Nematode (Micromonospora sp. AW050027 균주의 배지최적화 및 미생물제제 처리에 의한 소나무재선충 방제효과)

  • Park, Dong-Jin;Lee, Jae-Chan;Chang, Yong-Ha;Kim, Chang-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.138-147
    • /
    • 2010
  • Nematicidal activity against pine wood nematode, Bursaphelenchus xylophilus, was tested in the pot and field by the treatment of microbial formulation after media optimization. The optimized media composition was glycerol 10 g, soybean meal 10 g, NaCl 1 g, $CaCO_3$ 2 g, $K_2HPO_4$ 0.125 g per liter and microbial complex formulation was made with liquid and powder type. Most effective antibiotics against symbiotic microorganism with nematode, kanamycin, was added to the formulation. The control effects against pine wood nematodes were checked by pot test and field test. In the result of treatment by trunk injection, five times treatment was more effective than one time and the treatment with the formulation of concentrated culture supernatant was the most effective in the nematicidal activity showing below 10% mortality in pine tree.

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

Guidance & Control System Design based on Optimization (최적화 기반 유도제어시스템 설계)

  • Moon, Gwan-Young;Jun, Byung-Eul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.52-58
    • /
    • 2011
  • The missile control system is comprised of various control systems such as autopilot, guidance law, and homing filter and so on. To design these guidance and control system, the optimization technique is widely applied at each developing stage. However, this kind of optimization requires lots of time and cost and moreover, this approach does not give an overall system optimization result. In this paper, to use the optimization tool for control system design, the optimal problem formulation is done and the performance index and constraints are considered. And finally the systematically optimized method is proposed.

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

Shape Design Sensitivity Analysis and Optimization of General Plane Arch Structures (일반 평면 아치 구조물의 형상설계민감도 해석 및 최적설계)

  • 최주호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.238-245
    • /
    • 2000
  • A general formulation for shape design sensitivity analysis over a plane arch structure is developed based on a variational formulation of curved beam in linear elasticity. Sensitivity formula is derived using the material derivative concept and adjoint variable method for the stress defined at a local segment. Obtained sensitivity expression, which can be computed by simple algebraic manipulation of the solution variables, is well suited for numerical implementation since it does not involve numerical differentiation. Due to the complete description for the shape and its variation of the arch, the formulation can manage more complex design problems with ease and gives better optimum design than before. Several examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. Shape optimization is also conducted with two design problems to illustrate the excellent applicability.

  • PDF

Variable Aggregation in the ILP Design of WDM Networks with Dedicated Protection

  • Tornatore, Massimo;Maier, Guido;Pattavina, Achille
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 2007
  • In wavelength-division-multiplexing(WDM) networks a link failure may cause the failure of several high-bit-rate optical channels, thereby leading to large data loss. Recently, various protection and restoration mechanisms have been proposed to efficiently deal with this problem in mesh networks. Among them, dedicated path protection(DPP) is a promising candidate because of its ultra-fast restoration time and robustness. In this work we investigate the issue of planning and optimization of WDM networks with DPP. Integer linear programming(ILP), in particular, is one of the most common exact method to solve the design optimization problem for protected WDM networks. Traditional ILP formalizations to solve this problem rely on the classical flow or route formulation approaches, but both these approaches suffer from a excessively high computational burden. In this paper, we present a variable-aggregation method that has the ability of significantly reducing the complexity of the traditional flow formulation. We compare also the computational burden of flow formulation with variable aggregation both with the classical flow and route formulations. The comparison is carried out by applying the three alternative methods to the optimization of two case-study networks.