• Title/Summary/Keyword: Formation loss

Search Result 1,040, Processing Time 0.026 seconds

NEUROTOXICITY OF TRIMETHYLTIN IN HIPPOCAMPUS: A HYPEREXCITATORY TOXICITY

  • Chang, Louis W.
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.191-204
    • /
    • 1990
  • Trimethyltin (TMT) induced lesions in the rat hippocampal formation was reviewed. Adult rats were treated with a single dose of 6.0 mg TMT/kg b.w. and were sacrificed between 3-60 days following exposure. On the hippocampal formation, the granule cells of fascia dentata showed early changes which subsided considerably at a later time when the destruction of the pyramidal neurons of the Ammon's horn became increasingly pronounced with time, leading to severe destruction of the structure. It is interesting to note that there was an inverse relationship of pathological involvement between the f.d. granule cells and the Ammon's horn neurons; i.e., when there was a large sparing of the granule cells. there was an extensive damage to the Ammon's horn and vice versa. This inverse relationship was also true between the $CA_3$neurons and the $CA_{1,2}$neurons in the Ammon's horn. Progressive zinc loss, as demonstrated by Timm's method, on the Mossy fibers was also observed. Similar Mossy fiber zinc depletion has been demonstrated in electrical stimulatory excitation condition of the perforant path to the hippocampus. Depletion of corticosterone, an inhibitor to the hippocampal neurons, by means of adrenalectomy will exaggerate the TMT induced hippocampal lesion. Neonatal study revealed that a unique degenerative pattern of the Ammon's horn could be established in accordance with exposure to TMT at specific maturation periods of the fippocampal formation: increasing destruction of the Ammon's horn with increasing synaptogenesis between the f.d. granule cells and the Ammon's horn neurons. Thus it is apparent that the damage of the Ammon's horn, upon exposure to TMT, may depend on the integrity and functional state of the f.d. granule cells. A hyperexcitory scheme and mechanism as the toxicity basis of TMT in the hippocampal formation is proposed and discussed.

  • PDF

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [I] A PRIORI HYPOTHESIS OF PCN AND PCDF FORMATION PATHWAYS FROM MONOCHLOROPHENOLS

  • Ryu, Jae-Yong;Kim, Do-Hyong;Choi, Kum-Chan;Suh, Jeong-Min
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.217-231
    • /
    • 2006
  • The gas-phase formation of polychlorinated naphthalenes (PCNs) and dibenzofurans (PCDFs) was experimentally investigated by slow combustion of the three chlorophenols (CPs): 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP), in a laminar flow reactor over the range of 550 to $750^{\circ}C$ under oxidative condition. Contrary to the a priori hypothesis, different distributions of PCN isomers were produced from each CP. To explain the distributions of polychlorinated dibenzofuran (PCDF) and PCN congeners, a pathway is proposed that builds on published mechanisms of PCDF formation from chlorinated phenols and naphthalene formation from dihydrofulvalene. This pathway involves phenoxy radical coupling at unsubstituted ortho-carbon sites followed by CO elimination to produce dichloro-9, 10-dihydrofulvalene intermediates. Naphthalene products are formed by loss of H and/or Cl atoms and rearrangement. The degree of chlorination of naphthalene and dibenzofuran products decreased as temperature increased, and, on average, the naphthalene congeners were less chlorinated than the dibenzofuran congeners. PCDF isomers were found to be weakly dependent to temperature, suggesting that phenoxy radical coupling is a low activation energy process. Different PCN isomers, on the other hand, are formed by alternative fusion routes from the same phenoxy radical coupling intermediate. PCN isomer distributions were found to be more temperature sensitive, with selectivity to particular isomers decreasing with increasing temperature.

Root Resorption in Streptozotocin-induced Diabetic Rats with Ligature-induced Periodontitis

  • Kim, Ji-Hye;Lee, Dong-Eun;Park, Jung-Chul;Kim, Yoon Jae;Cha, Jeong-Heon;Bak, Eun-Jung;Yoo, Yun-Jung
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.111-116
    • /
    • 2015
  • To determine the effect of diabetes on root resorption in periodontitis, we investigated odontoclast formation and root resorption in diabetic rats with periodontitis. Odontoclast formation was observed in three groups of F344 rats: Controls (C) were normal rats without diabetes or periodontitis; the periodontitis (P) group had mandibular first molars to be ligatured; the periodontitis with diabetes (PD) group was intravenously administered streptozotocin (50 mg/kg) to induce diabetes and had mandibular first molars to be ligatured. On days 3, 10, and 20 after ligature, tumor necrosis factor (TNF)-${\alpha}$ and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression, odontoclast formation, and root resorption areas were evaluated by immunohistochemistry, tartrate-resistant acid phosphatase staining, and hematoxylin and eosin staining, respectively. The PD group showed frequent urination, weight loss, and hyperglycemia. Numbers of TNF-${\alpha}$- and RANKL-positive cells were higher in the P and PD groups than in the C group. It was more prevalent in PD group on day 3. Odontoclast formation was greater in the P and PD groups than in the C group on days 3 and 10, then decreased to same level as the C group by day 20. Root resorption in the PD and P groups showed increases on days 3 and 10, respectively, compared to the C group. These results suggest that diabetes may transiently increase root resorption on day 3 with high expression of TNF-${\alpha}$ and RANKL after periodontitis induction. This study could aid the understanding of root resorption in diabetic patients with periodontitis.

Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model

  • Takanche, Jyoti Shrestha;Kim, Ji-Eun;Jang, Sungil;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • Purpose: The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. Methods: An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. Results: MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. Conclusions: This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.

Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish

  • Jin, Sil;Jeon, Haewon;Choe, Chong Pyo
    • Development and Reproduction
    • /
    • v.26 no.1
    • /
    • pp.23-36
    • /
    • 2022
  • Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key epithelial structure governing facial skeleton development in vertebrates. Pouch formation is achieved through collective cell migration and rearrangement of pouch-forming cells controlled by actin cytoskeleton dynamics. While essential transcription factors and signaling molecules have been identified in pouch formation, regulators of actin cytoskeleton dynamics have not been reported yet in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and function of cfl1l in pouch development in zebrafish. We first showed that fish cfl1l might be an ortholog of vertebrate adf, based on phylogenetic analysis of vertebrate adf and cfl genes. During pouch formation, cfl1l was expressed sequentially in the developing pouches but not in the posterior cell mass in which future pouch-forming cells are present. However, pouches, as well as facial cartilages whose development is dependent upon pouch formation, were unaffected by loss-of-function mutations in cfl1l. Although it could not be completely ruled out a possibility of a genetic redundancy of Cfl1l with other Cfls, our results suggest that the cfl1l expression in the developing pouches might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming cells.

The Effect of Anti-microbial and the Inhibitory Effect of Biofilm Formation and Inflammatory Factors Production of Perillae semen Supercritical Fluid Extracts (초임계 자소자추출물의 항균효과와 바이오필름, 염증매개인자 생성 억제 효능)

  • Lee, Kwang Won;Park, Shinsung;Park, Su In;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.615-624
    • /
    • 2022
  • In this study, we assessed anti-oxidant activity, anti-microbial, inhibition of biofilm formation and inflammatory factors(nitric oxide, interleukin-6, interleukin-8) inhibitory effect of Perillae semen hydrothermal extract(PSW) and three kinds of Perillae semen supercritical fluid extract(PSSs) extracted by controlling temperature with no variation of pressure. Compared with PSW, PSSs had significantly lower minimal inhibitory concentrations(MICs) against Staphylococcus aureus(S. aureus) and the ability of PSSs to inhibit formation of biofilm was also superior. PSSs reduce the production of inflammatory mediator and inflammatory cytokines significantly compared to PSW. We suggest, therefore, Perillae semen supercritical fluid 45℃ extract which showed the best anti-microbial, inhibition of biofilm formation, and inhibition of inflammatory factors production among the supercritical fluid extracts could be used for protecting patients with atopic dermatitis from pruritus and transepidermal water loss as a functional ingredient from nature.

Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성)

  • Hong, Ji-Hwa;Kang, Min Gu;Kim, Nam-Soo;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.

Sinus bone graft and simultaneous vertical ridge augmentation: case series study

  • Kang, Dong-Woo;Yun, Pil-Young;Choi, Yong-Hoon;Kim, Young-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.36.1-36.8
    • /
    • 2019
  • Background: This study aims to examine the outcome of simultaneous maxillary sinus lifting, bone grafting, and vertical ridge augmentation through retrospective studies. Methods: From 2005 to 2010, patients with exhibited severe alveolar bone loss received simultaneous sinus lifting, bone grafting, and vertical ridge augmentations were selected. Fifteen patients who visited in Seoul National University Bundang Hospital were analyzed according to clinical records and radiography. Postoperative complications; success and survival rate of implants; complications of prosthesis; implant stability quotient (ISQ); vertical resorption of grafted bone after 1, 2, and 3 years after surgery; and final observation and marginal bone loss were evaluated. Results: The average age of the patients was 54.2 years. Among the 33 implants, six failed to survive and succeed, resulting in an 81.8% survival rate and an 81.8% success rate. Postoperative complications were characterized by eight cases of ecchymosis, four cases of exposure of the titanium mesh or membrane, three cases of periimplantitis, three cases of hematoma, two cases of sinusitis, two cases of fixture fracture, one case of bleeding, one case of numbness, one case of trismus, and one case of fixture loss. Prosthetic complications involved two instances of screw loosening, one case of abutment fracture, and one case of food impaction. Resorption of grafted bone material was 0.23 mm after 1 year, 0.47 mm after 2 years, 0.41 mm after 3 years, and 0.37 mm at the final observation. Loss of marginal bone was 0.12 mm after 1 year, and 0.20 mm at final observation. Conclusions: When sinus lifting, bone grafting, and vertical ridge augmentation were performed simultaneously, postoperative complications increased, and survival rates were lower. For positive long-term prognosis, it is recommended that a sufficient recovery period be needed before implant placement to ensure good bone formation, and implant placement be delayed.

Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling

  • Ding, Ning;Lu, Yanzhu;Cui, Hanmin;Ma, Qinyu;Qiu, Dongxia;Wei, Xueting;Dou, Ce;Cao, Ning
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.154-159
    • /
    • 2020
  • We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL-evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin-dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.

Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats

  • Shim, Ki-Shuk;Lee, Ji-Hye;Ma, Choong-Je;Lee, Yoon-Hee;Choi, Sung-Up;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • Ssanghwa-tang (SHT) is a traditional Korean herbal medicine widely prescribed to decrease fatigue following an illness. The purpose of this study was to investigate the effects of SHT on osteoclast differentiation in vitro, and on bone loss in ovariectomized (OVX) rats in vivo. SHT significantly reduced the receptor activator for the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, and multinucleated osteoclast formation in RAW264.7 cells without affecting cell viability. In addition, SHT significantly attenuated RANKL-induced mRNA expression levels of c-Src and cathepsin K. To examine the in vivo effect of SHT on OVX-induced bone loss in OVX rats, we administered SHT (0.6 g/kg BID) orally to OVX rats for 12 weeks. SHT administration significantly blocked OVX-induced decrease of femoral bone mineral density (BMD) and femoral trabeculae in OVX rats. In conclusion, these results suggest that SHT treatment effectively prevents OVX-induced bone loss, and this effect may result from its inhibitory effect on osteoclast differentiation.