Browse > Article
http://dx.doi.org/10.1080/19768354.2010.528615

Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats  

Shim, Ki-Shuk (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine)
Lee, Ji-Hye (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine)
Ma, Choong-Je (Department of Biomaterials Engineering, Kangwon National University)
Lee, Yoon-Hee (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine)
Choi, Sung-Up (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine)
Lee, Jae-Hoon (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine)
Ma, Jin-Yeul (Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine)
Publication Information
Animal cells and systems / v.14, no.4, 2010 , pp. 283-289 More about this Journal
Abstract
Ssanghwa-tang (SHT) is a traditional Korean herbal medicine widely prescribed to decrease fatigue following an illness. The purpose of this study was to investigate the effects of SHT on osteoclast differentiation in vitro, and on bone loss in ovariectomized (OVX) rats in vivo. SHT significantly reduced the receptor activator for the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, and multinucleated osteoclast formation in RAW264.7 cells without affecting cell viability. In addition, SHT significantly attenuated RANKL-induced mRNA expression levels of c-Src and cathepsin K. To examine the in vivo effect of SHT on OVX-induced bone loss in OVX rats, we administered SHT (0.6 g/kg BID) orally to OVX rats for 12 weeks. SHT administration significantly blocked OVX-induced decrease of femoral bone mineral density (BMD) and femoral trabeculae in OVX rats. In conclusion, these results suggest that SHT treatment effectively prevents OVX-induced bone loss, and this effect may result from its inhibitory effect on osteoclast differentiation.
Keywords
bone mineral density; osteoclast differentiation; ovariectomy; RAW264.7 cells; Ssanghwa-tang;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Yen PH, Kiem PV, Nhiem NX, Tung NH, Quang TH, Minh CV, Kim JW, Choi EM, Kim YH. 2007. A new monoterpene glycoside from the roots of Paeonia lactiflora increases the differentiation of osteoblastic MC3T3-E1 cells. Arch Pharm Res. 30:1179-1185.   과학기술학회마을   DOI   ScienceOn
2 Saftig P, Hunziker E, Everts V, Jones S, Boyde A, Wehmeyer O, Suter A, von Figura K. 2000. Functions of cathepsin K in bone resorption. Lessons from cathepsin K deficient mice. Adv Exp Med Biol. 477:293-303.
3 Soriano P, Montgomery C, Geske R, Bradley A. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693-702.   DOI   ScienceOn
4 Teitelbaum SL. 2000. Bone resorption by osteoclasts. Science. 289:1504-1508.   DOI   ScienceOn
5 Won JB, Ma JY, Um YR, Ma CJ. 2010. Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD. Pharmacogn Mag 6:111-115.   DOI   ScienceOn
6 Garcia Palacios V, Robinson LJ, Borysenko CW, Lehmann T, Kalla SE, Blair HC. 2005. Negative regulation of RANKL-induced osteoclastic differentiation in RAW 264.7 cells by estrogen and phytoestrogens. J Biol Chem. 280:13720-13727.   DOI   ScienceOn
7 Han DS, Lee HK, Cho HJ. 1983. Analgesic and anticonvulsionary effects of Ssanghwa-Tang. Kor J Pharmacog. 14:60-63.
8 Han YH, Shim CK. 1989. Effect of a blended Korean herbal remedy, Ssang Wha Tang, on the liver cytoplasmic protein binding of sulfobromophthalein in rats. Phytother Res. 3:109-111.   DOI
9 Heo J. 1994. Dongeuibogam. Seoul: Namsandang Press. p. 670-675.
10 Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, et al. 1999. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA. 96:3540-3545.   DOI   ScienceOn
11 Kalu DN. 1991. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 15:175-191.   DOI   ScienceOn
12 Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P. 1993. Osteoporosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA. 90:4485-4489.   DOI   ScienceOn
13 Oh KO, Kim SW, Kim JY, Ko SY, Kim HM, Baek JH, Ryoo HM, Kim JK. 2003. Effect of Rehmannia glutinosa Libosch extracts on bone metabolism. Clin Chim Acta. 334:185-195.   DOI   ScienceOn
14 Pang M, Martinez AF, Fernandez I, Balkan W, Troen BR. 2007. AP-1 stimulates the cathepsin K promoter in RAW 264.7 cells. Gene. 15:151-158.
15 Putnam SE, Scutt AM, Bicknell K, Priestley CM,Williamson EM. 2007. Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytother Res. 21:99-112.   DOI   ScienceOn
16 Qin L, Han T, Zhang Q, Cao D, Nian H, Rahman K, Zheng H. 2008. Antiosteoporotic chemical constituents from Er-Xian Decoction, a traditional Chinese herbal formula. J Ethnopharmacol. 118:271-279.   DOI   ScienceOn
17 Rodan GA, Martin TJ. 2000. Therapeutic approaches to bone diseases. Science. 289:1508-1514.   DOI
18 Rozen S, Skaletsky HJ. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132:365-386.
19 Kim IH, Hwang KJ. 1981. Studies on the anti-inflammtory activities of Ssangwha-tang. Natural Pro Sci. 12:131-136.
20 Kil JS, Kim MG, Choi HM, Lim JP, Boo Y, Kim EH, Kim JB, Kim HK, Leem KH. 2008. Inhibitory effects of Angelicae Gigantis Radix on osteoclast formation. Phytother Res. 22:472-476.   DOI   ScienceOn
21 Lee H, Lim HH. 2003. Effects of Ssangwha-tang added to Cervi Cornu Parvum on bone density and bone biochemical marker in ovariectomized rats. J Ori R Med. 13:45-67.
22 Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. 2008. The laboratory rat as an animal model for osteoporosis research. Comp Med. 58:424-430.
23 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}{CT}}$ method. Methods. 25:402-408.   DOI   ScienceOn
24 Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 3:889-901.   DOI   ScienceOn
25 Asagiri M, Takayanagi H. 2007. The molecular understanding of osteoclast differentiation. Bone. 40:251-264.   DOI   ScienceOn
26 Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature. 423:337-342.   DOI   ScienceOn
27 Branca F. 2003. Dietary phyto-oestrogens and bone health. Proc Nutr Soc. 62:877-887.   DOI   ScienceOn
28 Okamoto F, Okabe K, Kajiya H. 2001. Genistein, a soybean isoflavone, inhibits inward rectifier K(+) channels in rat osteoclasts. Jpn J Physiol. 51:501-509.   DOI   ScienceOn