• Title/Summary/Keyword: Formation Flying

Search Result 92, Processing Time 0.019 seconds

Development of Navigation Computer for Small Satellites Using Integrated GPS/INS (소형위성용 GPS/INS 통합 항법 컴퓨터 개발)

  • Choi, Young-Hoon;Lee, Byung-Hoon;Chnag, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.393-398
    • /
    • 2008
  • This paper suggests a GPS/INS navigation computer architecture that can be applied to small satellites. In order to implement a GPS/INS navigation system on a small satellite, the extreme environment in space such as radiation, micro-gravity, vacuum, etc. must be considered. In addition, a real-time processing ability is required for the GPS/INS navigation system since the formation flying of multiple small satellites is the ultimate goal. The developed navigation electronics utilizes a PowerPC-type MPC860T that has space environment heritage, and a pair of Atmega128s that has been implemented in KAUSAT-2 and has completed the space environment verification tests. The navigation algorithm is designed to work in VxWorks environment, ported in MPC860T.

Engineering Control of Mill Fire for High Volatile Sub-bituminous Coal (저급탄 미분기 화재발생 인자분석 연구)

  • Keel, Sang-In;Park, Ho-Young;Kim, Young-Joo;Youn, Sung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • Lots of Coal power plants (about 30) using bituminous coals are being run in Korea. The use of high volatile low grade sub-bituminous coal is increasingly extended because of imbalance between the worldwide coal supply and demand. Mill-fire has been an important issue since the use of such sub-bituminous coal. In existing coal plants of Korea, shutdown of coal and air supplies could be only a way, and an alternative has not been found in suppressing the mill fire. The inside fowfield in the mills has a highly fuel-rich, low temperature, and high velocity and non-reactive such that it could be a nonreactive system essentially. Nevertheless, occasional fire-occurrence could be attributed to the existence of an ignition source. However it has not been so far investigated in detail. The current work has a focus on suppressing the mile fire via some parametric experimental study such as effects of temperature, residence time, ignition source, and inert gas mixing. The results show that an small amount of $CO_2$- or $N_2$-mixing with air is very effective in suppressing fire formation even at high temperatures or flying sparks. The results suggest that exhaust gas recirculation into the mill should be an alternative to suppress mill fire.

Real-Time Relative Navigation with Integer Ambiguity

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.3-34.3
    • /
    • 2008
  • Relative navigation system is presented using measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide real-time relative navigation results as well as absolute navigation results for two formation flying satellites separated about 1km in low earth orbit. To improve the performance, more accurate dynamic model and modified relative measurement model are developed. This modified method prevents non-linearity of the measurement model from degrading precision by applying linearization about the states from absolute navigation algorithm not about a priori states. Furthermore, absolute states are obtained using ion-free GRAPHIC pseudo-ranges and precise relative states are provided using double differential carrier-phase data based on Extended Kalman Filter. The software-based simulation is performed and achieved meter-level precision for absolute navigation and millimeter-level precision for relative navigation. The absolute and relative accuracies at steady state are about 0.77m and 4mm respectively (3D, r.m.s.). In addition, Integer ambiguity algorithm (LAMBDA method) improves simulation performances.

  • PDF

Development of Hardware-in-the-loop Simulator for Spacecraft Attitude Control using thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.3-36
    • /
    • 2008
  • The ground-based spacecraft simulator is a useful tool to realize various space missions and satellite formation flying in the future. Also, the spacecraft simulator can be used to develop and verify new control laws required by modern spacecraft applications. In this research, therefore, Hardware-in-the-loop (HIL) simulator which can be demonstrated the experimental validation of the theoretical results is designed and developed. The main components of the HIL simulator which we focused on are the thruster system to attitude control and automatic mass-balancing for elimination of gravity torques. To control the attitude of the spacecraft simulator, 8 thrusters which using the cold gas (N2) are aligned with roll, pitch and yaw axis. Also Linear actuators are applied to the HIL simulator for automatic mass balancing system to compensate for the center of mass offset from the center of rotation. Addition to the thruster control system and Linear actuators, the HIL simulator for spacecraft attitude control includes an embedded computer (Onboard PC) for simulator system control, Host PC for simulator health monitoring, command and post analysis, wireless adapter for wireless network, rate gyro sensor to measure 3-axis attitude of the simulator, inclinometer to measure horizontality and battery sets to independently supply power only for the simulator. Finally, we present some experimental results from the application of the controller on the spacecraft simulator.

  • PDF

Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

  • Oh, Hyungjik;Park, Han-Earl;Lee, Kwangwon;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

Evolution of late-type galaxies in cluster environment: Effects of high-speed multiple interactions with early-type galaxies

  • Hwang, Jeong-Sun;Park, Changbom;Banerjee, Arunima;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2017
  • Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the later. We thus perform numerical study on the evolution of a late-type galaxy falling radially toward the cluster center interacting with neighbouring early-type galaxies, using N-body, hydrodynamical simulations. Based on the information about the typical galaxy encounters obtained by using the galaxy catalog of Coma cluster, we run the simulations for the cases where a Milky Way Galaxy-like late-type galaxy, flying either edge-on or face-on, experiences six consecutive collisions with twice more massive early-type galaxies having hot gas in their halos. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the high-speed multiple collisions with the early-type galaxies, such as on the cold gas content and the star formation activity, particularly through the hydrodynamic interactions between the cold disk and the hot gas halos. By comparing our simulation results with those of others, we claim that the role of the galaxy-galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy-cluster interactions, depending on the dynamical history.

  • PDF

The Study on Technique and Design Appeared in Textile of Miaos in China (중국내 묘족의 직물에 나타난 기법과 문양 고찰)

  • 부애진;홍정민
    • Journal of the Korean Society of Costume
    • /
    • v.37
    • /
    • pp.149-162
    • /
    • 1998
  • This study is thed Embroidery, Cross-stitchery, Weaving, Wax-Printing of technique and design appeared in textile of Miaos dwells in south-west among the minority people of china. The study is as follows. First, the technique of textile1) satin stitch, couching stitch, french-knot stitch, etc. using anther silk thread or cotton thread color 2) cross-stitchery 3) hand-weaving technique which is shaped other warp or weft using simple loom 4) the technique of dyeing of pattern using effect with wax. These methods are singly used mixing together, therefore doubled beauty. Second, these technuque of ornament have other independence, specially ornament apron, sling, sleeve borders, slack borderss, edge of upper garment, take off and put on easily, heighten effect of various ornament, can preserve many years. Third, Maker, female born in this country fashion by need of herself, used liberal method shown in unique creativity of life. This texture make standards capable female proud of intelligent and skill of herself. Fourth, Design appeared in textile like as pattern flying bird in the sky, strolling beast in the field, lion rolling gem, laughing dragon winding snake at gem, birks, flowers, fish, butterfly is used as the wish of long life, a lucky sign. They expressed creativity and unique conception using formation : the technique transform other shape using by omitting or adding or overestimating. Geometric pattern of tartan, revealing, Fifth, composition structure having balance and symmetry or contradiction towards center and circumstance of the center harmonized repeatedly method, expressed unique artful attraction by full composition.

  • PDF

Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

  • Hwang, Junga;Kim, Hyangpyo;Park, Jaeheung;Lee, Jaejin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites (~10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

Improving a Digital Redesign for Time-Varying Trackers (시변 추종제어기를 위한 디지털 재설계의 개선)

  • Song, Hyun-Seok;Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • Digital redesign is yet another efficient tool to convert a pre-designed analog controller into a sampled-data one to maintain the analog closed-loop performance in the sense of state matching. A rising difficulty in developing a digital redesign technique for trackers with time-varying references is the unavailability of a closed-form discrete-time model of a system, even if it is linear time-invariant. A way to resolve this is to approximate the time-varying reference as a piecewise constant one, which deteriorates the state matching performance. Another remedy may be to decrease a sampling period, which however could numerically destabilize the optimization-based digital redesign condition. In this paper, we develop a digital redesign condition for time-varying trackers by approximating the time-varying reference through a triangular hold and by introducing delta-operated discrete-time models. It is shown that the digitally redesigned sampled-data tracker recovers the performance of the pre-designed analog tracker under a fast sampling limit. Simulation results on the formation flying of satellites convincingly show the effectiveness of the development.

Design and Implementation of Receiver Network Elements for Real-Time Precise GPS/GNSS (실시간 정밀 GPS/GNSS를 위한 위성항법 수신기 망 구성 요소 설계 및 구현)

  • Kim, Hee-Sung;Lee, Hyung-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.126-133
    • /
    • 2010
  • Due to the deployment of various wireless networks originating from CDMA, GSM, and WLAN, it became very convenient to exchange information from one place to another. As compared with the traditional environments for one-way information distribution based on fixed radio frequency bands, the convenient wireless network environments will bring about many changes in positioning technologies based on global navigation satellites. Among the many changes to come, the reconfigurable receiver network is one of the most attractive concepts since it can be tailored to a specific application area among networked robots, formation flying, bridge monitoring, and traffic monitoring. As an initial study to develop a reconfigurable receiver network, this paper deals with the design and implementation of the key elements of the reconfigurable receiver netowork; server, broadcaster, and client. In the designed receiver network, a sever receives and decodes measurements from a reference receiver installed at a known location, a broadcaster processes and transfers the messages from servers to clients and manages connections with servers and clients, a client receives the messages from the broadcaster and performs differential positioning. A real-time experiment result is demonstrated to validate the functionalities of each network element.