• Title/Summary/Keyword: Formaldehyde adsorption

Search Result 68, Processing Time 0.025 seconds

Properties of Charcoal Board Manufactured from Domestic Wood Waste

  • Seo, In-Su;Lee, Hwa-Hyoung
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.3
    • /
    • pp.237-247
    • /
    • 2010
  • This research was carried out to examine the properties of black charcoal board, in order to find the proper manufacturing condition for the black charcoal-board made of the charcoal. The charcoal in this study was distillated from domestic wood waste, and it were also the purpose of this study to see if the black charcoal-board has the advantageous properties of charcoal as a well-being building material against the sick house problem. Domestic wood waste was consisted of MDF 40%, PB 30%, plywood 15% and wood 15%, respectively. Black charcoal board was produced by hot pressing with following conditions; temperature $170^{\circ}C$, three stage pressing cycle of $40-10-40\;kgf/cm^2$(1min.-2.5min.-5min.) and non formaldehyde adhesives [P15%+M5%:MDI(M), poly vinyl acetate emulsion(P). Fine mixed particle size [#6-12(16.9%), #12-18(16.7%), #12-40(47.2%), #40-60(9.5%), #60-100(5.9%), less than #100(3.8%)] gave better results than larger particle size [over #6(33.8%), #12-18(17.7%), #12-40(37.7%), #40-60(6.4%), #60-100(2.6%), less than #100(1.8%)]. Final moisture content of the mat was best at 36%. Black charcoal-board showed less MOR and IB(internal bond), more WA(water absorption) than that of white charcoal-board. Black charcoal board showed not only the same gas adsorption and dimensional stability as white charcoal board but also good cutting, nailing and drilling for indoor environment systems.

  • PDF

Characteristics for VOCs and aldehydes emission rates from architectural flooring (건축용 바닥재로부터의 VOCs와 Aldehydes 방출 특성)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Seo, Soo-Yun;Lee, Woo-Suk;Lim, Jun-Ho;Lim, Jeong-Yun
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.544-552
    • /
    • 2006
  • Emission tests were carried out to investigate the characteristics of concentration according to flooring sort using small chamber method. The target Volatile Organic Compounds (VOC) included 27 individual compounds of environmental concern, which were determined by adsorption sampling and thermal desorption coupled with GC/MS method and by DNPH cartridge/HPLC method. The emission factor of Total Volatile Organic Compounds (TVOC) and Formaldehyde (HCHO) was detected $0.3mg/m^2{\cdot}h$ and $0.2mg/m^2{\cdot}h$ respectively, and the floorings of 37 (9 PVC Tile, 10 PVC Sheet, 18 Flooring) were satisfied emission standard. TVOC emission factor appeared in order of concentration of PVC Sheet, PVC Tile, and floor flooring, while HCHO was detected very high emission factor (as $0.4mg/m^2{\cdot}h$) at floor flooring above PVC series (as $0.001mg/m^2{\cdot}h$).

Effect of Heating Temperature and Time of Coffee Waste on The Adsorptivity of Formaldehyde (폼알데하이드 흡착능에 대한 커피부산물의 열처리 조건 영향)

  • Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.390-399
    • /
    • 2015
  • This study was conducted to examine the potential use of coffee waste (CW) as an adsorbent of HCHO by adding into fiberboard. For the purpose, CW treated with various temperatures and times was placed in desiccator with a HCHO solution and then the HCHO adsorptivity of the CW was measured by acetylacetone (ATAN) and DNPH methods. In the results of ATAN analysis, amount of HCHO adsorbed in distilled water was the lowest on the non-treated CW and steadily increased to $100^{\circ}C$-treated temperature. However, over the $100^{\circ}C$, heating temperature (H-Temp) had not an effect on the HCHO adsorptivity of CW. Amount of HCHO adsorbed on CW itself was the highest at $100^{\circ}C$ H-Temp, following by $50^{\circ}C$, $150^{\circ}C$, $0^{\circ}C$, $250^{\circ}C$ and $200^{\circ}C$. For the HCHO adsorptivity of CW measured by DNPH methods, HCHO was not detected in the distilled water stirred with non-treated CW, but detected from the distilled water stirred with heating-treated CW. The content was the highest in the CW heating-treated at $100^{\circ}C$ for 10 min. In addition, HCHO adsorbed on CW itself increased to the H-Temp of $100^{\circ}C$ regardless of heating time, but decreased or reduced greatly degree of the increase over $100^{\circ}C$ H-Temp. In conclusion, optimal heating conditions of CW for the HCHO adsorption might be H-Temp between 100 and $150^{\circ}C$ with 10 min according as technical and economical reasons. Heating-treated CW manufactured with above the conditions can be used as an adsorbent in conventional fiberboard production for reducing HCHO emssion.

Manufacture and Properties of White Charcoal Board in Relation with Final Mat Moisture Content and Charcoal Particle Size (백탄파티클 크기와 최종매트함수율에 따른 백탄보드의 제조와 성능)

  • Lee, Hwa Hyoung;Cho, Youn Mean;Park, Han Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.22-29
    • /
    • 2005
  • This research was carried out not only to examine the proper manufacturing condition for white charcoal board in relation to charcoal particle size and final mat moisture content (FMC), but also to maintain the advantageous properties of white charcoal as a well being building material against the sick house problem. Excellent functional white charcoal board was produced with two groups of FMC 20~25% and FMC 36~60%. The latter showed best results among tested samples in two types which are #40-60type-P15%, M5%, FMC 60% and mixed type-P15%, M5%, FMC36% with non formaldehyde adhesives [MDI (M), poly vinyl acetate emulsion (P)] and three stage pressing cycle of 30-10-$30kgf/cm^2$ (1 min.-1.5 min.-6 min.). The former gave highly acceptable results in two types which are #6 over-M15%FMC25% and mixed type-M25%FMC20%. White charcoal board gave excellent in dimensional stability, gas adsorption and far-infrared emission.

Preparation and characterization of the primary gas standards for isoprene (아이소프렌 일차표준가스의 제조 및 특성 평가)

  • Kim, Taesu;Kang, Chul-Ho;Kim, Yong Doo;Lee, Seungho;Kim, Dalho
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.357-363
    • /
    • 2014
  • Isoprene is a one of the biogenic volatile organic compounds (BVOCs) and it is known as a source of the tropospheric ozone and formaldehyde. In addition, isoprene is a trace component of the exhaled breath and it is a potential biomarker for the diagnosis of diseases such as lung cancer. In these regards, isoprene gas standards are required for the accurate measurement of isoprene in air samples. To establish a standard for isoprene gas, gravimetric preparation and characterization of primary gas standards were studied. The primary gas standards were produced independently in 4 aluminum cylinders and concentrations were examined by GC-FID. As a result, the uncertainty of the gravimetric preparations including purity of the raw material was 0.01% and reproducibility of the preparation of independent 4 cylinders was 0.08%. The primary gas standards for isoprene showed 14 months of long-term stability. The relative expended uncertainty of 2.8% (95% of confidence level, k=1.96) was assigned to the certified value of 10 ${\mu}mol$/mol level of isoprene based on the quantitative evaluation of the purity, weighing, reproducibility, adsorption and long-term stability.

Developing of Sound Absorption Composite Boards Using Carbonized Medium Density Fiberboard (탄화 중밀도섬유판을 이용한 목재흡음판 개발)

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop;Kim, Jong-In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.714-722
    • /
    • 2014
  • In the previous study, a variety of wood-based panels was thermally decomposed to manufacture carbonized boards that had been proved to be high abilities of insect and fungi repellence, corrosion and fire resistant, electronic shielding, and formaldehyde adsorption as well as sound absorption performance. Based on the previous study, carbonized medium density fiberboard (c-MDF) was chosen to improve sound absorption performance by holing and sanding process. Three different types of holes (cross shape, square shape, and line) with three different sanding thickness (1, 2, and 3 mm) were applied on c-MDF and then determined sound absorption coefficient (SAC). The control c-MDF without holes had 14% of SAC, however, those c-MDFs with holes had 16.01% (square shape), 15.68% (cross shape), and 14.25% (line) of SAC. Therefore, making holes on the c-MDF did not significantly affect on the SAC. As the degree of sanding increased, the SAC of c-MDF increased approximately 65% on sanding treated c-MDFs (21.5, 21.83, and 19.37%, respectively) compared to the control c-MDF (13%). Based on these results, composite sound absorbing panel was developed with c-MDF and MDF (11 mm). The noise reduction coefficient of composite sound absorbing panel was 0.45 which was high enough to certify as sound absorbing material.

Characteristics of pollutant emission from wallpapers - Around TVOC and HCHO - (벽지에서 발생되는 오염물질 방출특성 - TVOC와 HCHO를 중심으로 -)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Lee, Hong-Suk;Lim, Jun-Ho;Jang, Mee;Seo, Soo-Yun
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.542-551
    • /
    • 2005
  • This study is to investigate the characteristics of emission concentration according to wallpaper sort and emission time using small chamber method. The target compounds included 45 VOCs and formaldehyde, which were respectively determined by adsorption sampling and thermal desorption coupled with GC/MS method, and by sampling in DNPH cartridge and HPLC method. The emission factor of TVOC and HCHO was detected to $1.1mg/m^2{\cdot}h$ and $0.01mg/m^2{\cdot}h$ respectively, and the wallpapers of 25 satisfied emission standard. TVOC emission factor appeared in order of the concentration of PVC, natural, and Non-PVC wallpaper, while HCHO was detected very low concentration without relation to wallpaper sort. The paraffin hydrocarbons appeared to be the most contributable class of hydrocarbons in terms of their concentrations, followed by aromatics, and olefins, halogenated hydrocarbons was not detected. PVC wallpapers plentifully emitted TVOC above other wallpapers, and toluene was showed higher concentration of 10 times than natural wallpaper. In addition to, emission factor according to elapse was gradually decreased.

Effects of Boliing, Steaming, and Chemical Treatment on Solid Wood Bending of Quercus acutissima Carr. and Pinus densiflora S. et. Z. (자비(煮沸), 증자(蒸煮) 및 약제처리(藥劑處理)가 상수리나무와 소나무의 휨가공성(加工性)에 미치는 영향(影響))

  • So, Won-Tek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.19-62
    • /
    • 1985
  • This study was performed to investigate: (i) the bending processing properties of silk worm oak (Quercus acutissima Carr.) and Korean red pine (Pinus densiflora S. et Z.) by boiling and steaming treatments; (ii) the effects of interrelated factors - sapwood and heartwood, annual ring placement, softening temperature and time, moisture content. and wood defects on bending processing properties; (iii) the changing rates of bending radii after release from a tension strap, and (iv) the improving methods of bending process by treatment with chemicals. The size of specimens tested was $15{\times}15{\times}350mm$ for boiling and steaming treatments and $5{\times}10{\times}200mm$ for treatments with chemicals. The specimens were green for boiling treatments and dried to 15 percent for steaming treatments. The specimens for treatments with chemicals were soaked in saturated urea solution, 35 percent formaldehyde solution, 25 percent polyethylene glycol -400 solution, and 25 percent ammonium hydroxide solution for 5 days and immediately followed the bending process, respectively. The results obtained were as follows: 1. The internal temperature of silk worm oak and Korean red pine by boiling and steaming time was raised slowly to $30^{\circ}C$ but rapidly from $30^{\circ}C$ to $80-90^{\circ}C$ and then slowly from $80-90^{\circ}C$ to $100^{\circ}C$. 2. The softening time required to the final temperature was directly proportional to the thickness of specimen. The time required from $25^{\circ}C$ to $100^{\circ}C$ for 15mm-squared specimen was 9.6-11.2 minutes in silk worm oak and 7.6-8.1 minutes in Korean red pine. 3. The moisture content (M.C.) of specimen by steaming time was increased rapidly first 4 minutes in the both species, and moderately from 4 to 20 minutes and then slowly and constantly in silk worm oak, and moderately from 4 to 15 minutes and then slowly and constantly in Korean red pine. The M.C. of 15mm-squared specimen in 50 minutes of steaming was increased to 18.0 percent in the oak and 22.4 percent in the pine from the initial conditioned M.C. of 15 percent The rate of moisture adsorption measured was therefore faster in the pine than in the oak. 4. The mechanical properties of the both species were decreased significantly with the increase of boiling rime. The decrement by the boiling treatment for 60 minutes was measured to 36.6-45.0 percent in compressive strength, 12.5-17.5 percent in tensile strength, 31.6-40.9 percent in modulus of rupture, and 23.3-34.6 percent in modulus of elasticity. 5. The minimum bending radius (M.B.R.) of sapwood and heartwood was 60-80 mm and 90 mm in silk worm oak, and 260 - 300 mm and 280 - 300 mm in Korean red pine, respectively. Therefore, the both species showed better bending processing properties in sapwood than in heartwood. 6. The M.B.R. of edge-grained and flat-grained specimen in suk worm oak was 60-80 mm, but the M.B.R. in Korean red pine was 240-280 mm and 260-360 mm, respectively. Comparing the M.B.R. of edge-grained with flat-grained specimen, in the pine the edge-grained showed better bending processing property than the flat-grained. 7. The bending processing properties of the both species were improved by the rising of softening temperature from $40^{\circ}C$ to $100^{\circ}C$. The minimum softening temperature for bending was $90^{\circ}C$ in silk worm oak and $80^{\circ}C$ in Korean red pine, and the dependency of softening temperature for bending was therefore higher in the oak than in the pine. 8. The bending processing properties of the both species were improved by the increase of softening time as well as temperature, but even after the internal temperature of specimen reaching to the final temperature, somewhat prolonged softening was required to obtain the best plastic conditions. The minimum softening time for bending of 15 mm-squared silk worm oak and Korean red pine specimen was 15 and 10 minutes in the boiling treatment, and 30 and 20 minutes in the steaming treatment, respectively. 9. The optimum M.C. for bending of silk worm oak was 20 percent, and the M.C. above fiber saturation point rather degraded the bending processing property, whereas the optimum M.C. of Korean red pine needed to be above 30 percent. 10. The bending works in the optimum conditions obtained as seen in Table 24 showed that the M.B.R. of silk worm oak and Korean red pine was 80 mm and 240 mm in the boiling treatment, and 50 mm and 280 mm in the steaming treatment, respectively. Therefore, the bending processing property of the oak was better in the steaming than in the boiling treatment, but that of the pine better in the boiling than in the steaming treatment. 11. In the bending without a tension strap, the radio r/t of the minimum bending radius t to the thickness t of silk worm oak and Korean red pine specimen amounted to 16.0 and 21.3 in the boiling treatment, and 17.3 and 24.0 in the steaming treatment, respectively. But in the bending with a tension strap, the r/t of the oak and the pine specimen decreased to 5.3 and 16.0 in t he boiling treatment, and 3.3 and 18.7 in the steaming treatment, respectively. Therefore, the bending processing properties of the both species were significantly improved by the strap. 12. The effect of pin knot on the degradation of bending processing property was very severe in silk worm oak by side, e.g. 90 percent of the oak specimens with pin knot on the concave side were ruptured when bent to a 100 mm radius but only 10 percent of the other specimens with pin knot on the convex side were ruptured. 13. The changing rate in the bending radius of specimen bent to a 300 mm radius after 30 days of exposure to room temperature conditions was measured to 4.0-10.3 percent in the boiling treatment and 13,0-15.0 percent in the steaming treatment. Therefore, the degree of spring back after release was higher in the steaming than in the boiling treatment. And the changing rate of moisture-proofing treated specimen by expoxy resin coating was only -1.0.0 percent. 14. Formaldehyde, 35 percent solution, and 25 percent polyethylene glycol-400 solution found no effect on the plasticization of the both species, but saturated urea solution and 25 percent ammonium hydroxide solution found significant effect in comparison to non-treated specimen. But the effect of the treatment with chemicals alone was inferior to that of the steaming treatment, and the steaming treatment after the treatment with chemicals improved 10-24 percent over the bending processing property of steam-bent specimen. 15. Three plasticity coefficients - load-strain coefficient, strain coefficient, and energy coefficient - were evaluated to be appropriate for the index of bending processing property because the coefficients had highly significant correlation with the bending radius. The fitness of the coefficients as the index was good at load-strain coefficient, energy coefficient, and strain coefficient, in order.

  • PDF