• Title/Summary/Keyword: Forging Industry

Search Result 93, Processing Time 0.02 seconds

Analysis of Forging Technology based on Investigation of Production Cost in the Korean Forging Industry (국내 단조산업 생산비용 조사를 통한 단조기술 분석)

  • Lee, H.W.;Choi, S.;Bae, S.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.523-528
    • /
    • 2010
  • The forging industry is composed of those plants that make parts to order for customers; or make parts for their own company's internal use; or make standard parts for resale. Also, the forging industry is closely related with automobile industry and ship building industry - Korea's major export industry. But, it is hard to find the Korea's forging industry's statistical analysis because it is not revealed with final product. In this paper, we perform statistical analysis using the micro data service provided by the Statistics Korea. We focus on the analysis of production costs as well as the status of forging company and their employee.

Closed-Die Forging Analysis of Spling-LikeComponents (스플라인 기어류의 폐쇄단조 해석)

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.187-194
    • /
    • 1999
  • Closed-die forging of spline was analysed using the upper bound elemental technique, Two different forging methods, denoted here as side extrusion-forging and upset forging, were proposed, The kinematically admissible velocity fields for each of the forging methods, which could express trapezoidal, rectangular and serration tooth forms, were presented. Upper bounds to forging loads and deformed configurations were predicted using the velocity fields. Theoretical results were compared with experimental ones. Experiments with lead were carried out at room temperature where grease was used as a lubricant. The present investigation revealed that analytical forging loads were reduced by using the side extrusion-forging but the upset forging could improve configuration of the final forged splines.

  • PDF

A Study on the mold attachment for process automation with hot open die forging (열간 자유단조 공정 자동화를 위한 금형 어태치먼트에 관한 연구)

  • Kim, C.P.;Jeong, H.M.;Chung, H.S.;Ji, M.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.70-75
    • /
    • 2012
  • In mechanical industries, forging is one of the basic process. But comparing the other developed industries, forging industries can not reach at the level of that development. In forging industries, the quality of the products totally depends on the skills of workers and also the precision of the equipments. Particularly because the open die forging industry is unable to deviate from the past method of production and all works are manually progressed, the operator is always exposed to the danger. In the regard some additional device has been made especially. Thus, in this research, by using the forklift as the means for the manipulation of the development object system, it tries to be comprised the process automation. After than it is fitted with the forklift for safe and easy handling of jobs and products during open die forging process. First of all, development system mold has been assembled to the system, after than it is assembled with forklift. This development system has been applied for handling of large scale products more than 300kg, and the satisfactory result with uniform quality of the products have been achieved due to this mechanical setup.

A Case Study on The Development of Quality Cost Management System and Continuous Improvement in The Forging Industry (단조산업의 품질비용 관리체계 개발 및 지속적 품질개선 방안에 관한 사례 연구)

  • Kim, Kang-Woo;Cha, Byung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.218-228
    • /
    • 2020
  • The material industry is an important infrastructure industry that uses process technology in order to produce parts applied to the final product and determine the quality of the finished product. However, the market environment, which has been recognized as a 3D industry, has deteriorated recently and lost competitiveness compared to other material industry countries. This study analyzed the characteristics of forging companies and The study found that three characteristics of the forging industry, facility-oriented, order-based, and field-centered, and internal failure cost and external failure costs were set as the range of quality cost. A total of eight quality tasks were selected by applying the quality cost management system and continuous quality improvement process developed for large-scale A forging company, and improvement activity proved its effectiveness reducing quality costs by 63.3% compared to the previous year. The research helps forging companies establish a quality management strategy by systematically managing and analyzing quality costs.

Effect of Pre-strain on the Bauschinger Phenomenon of Micro-Alloying Forging Steel (비조질강의 바우싱거 효과에 미치는 변형율 영향)

  • Kwon Y.-N.;Lee Y. S.;Kim S. W.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.313-316
    • /
    • 2005
  • In the present study, Bauschinger effect was investigated for the micro-alloying forging steel which has been developed for about 30 years ago to save energy consumption by eliminating the heat treatment processes in the forging industry. The micro-alloying steels used fur cold forging industry mainly aim to replace the usual carbon steel. With the conventional carbon steels, all the deformation history can be eliminated after the final heat treatment(quenching and tempering). In the case of micro-alloying forging steels, however, the prior deformation history should be taken into consideration to meet the mechanical property requirement since the microstructure of micro-alloying steels might exhibit the Bauschinger effect, which was not needed to consider in the case of conventional carbon steel having quenching and tempering treatment. In the present study, the reverse loading tests were carried out to determine the Bauschinger effect of micro-alloying steel which composed of ferrite and cementite phases.

  • PDF

Development of an Enclosed Die Forging Die Set and its Application to Precision Forging (폐쇄단조 다이세트 개발 및 정밀단조 응용)

  • Jun B. Y.;Park R. H.;Choi S. H.;Sung J. Y.;Kim C. G.;Jeong S. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.143-147
    • /
    • 2005
  • In this study, a die set for enclosed die forging is developed and it is applied to precision forging of bevel gears and spiders. The enclosed die forging die set is introduced in detail together with the enclosed die forging. A target mechanical press and a model product are selected and various engineering technologies are applied for detail design of the enclosed die forging die set. Several precision forgings are manufactured by the developed die set. The enclosed die forging die set as well as the precision forging processes are developed under intensive industry-university cooperation.

  • PDF

Development Trend of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 개발동향)

  • Kim D. K.;Kim D. Y.;Kim Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.06a
    • /
    • pp.131-139
    • /
    • 2005
  • Reactor Vessel is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings has been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the development trend of the open die forging process and manufacturing experience of large head forgings which canl be used for the reactor vessel of nuclear power plant.

  • PDF

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

Integration Forming Technology based on Cold Hot Forging of Clutch Jaw Parts for Farm Machinery (냉열간 단조기술을 적용한 농기계용 클러치 Jaw 부품 일체화 성형기술)

  • Park, Dong-Hwan;Han, Seong-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.489-495
    • /
    • 2015
  • Forging is a manufacturing process involving the shaping of metal using localized compressive forces and the process of deforming metal into a predetermined shape using certain tools and press according to the temperature. Forging provides stronger metal parts than that possible by casting or machining. Conventional clutch jaw parts have been developed through cold forging and precision machining; however, fabrication of integral clutch jaw parts for farm machinery has not been reported yet. These parts were developed by applying a complex forging technology combining cold and hot forging. The integrated forming technology proposed in this study will be useful for reducing the lead-time for manufacturing, improving the accuracy of products, and eliminating the welding process.

Comparison of the Microstructure and Mechanical Property between Gravity Casting Forging and Rheo-diecasting Forging using A356 Alloy (A356 합금의 중력 주조/단조와 Rheo-diecasting/단조의 미세조직 및 기계적 특성 비교)

  • Lee, Jun-Young;Lim, Jae-Yong;Lee, Seung-Yong;Moon, Seoug-Won;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.210-214
    • /
    • 2013
  • Recently, the automotive industry has replaced cast iron to lightweight materials like aluminum for engine efficiency of automobiles and an emission control by government. In this paper we studied two auto parts manufacturing methods using an alloy of A356. That is gravity casting and H-NCM Rheo-diecasting forging. We analyzed the microstructure and mechanical properties for this method. In Microstructure analysis results, H-NCM Rheo-diecasting forging has more finer microstrucre and better forging effect. Resulting in better mechanical properties than gravity forging.