• Title/Summary/Keyword: Forest stand development

Search Result 103, Processing Time 0.025 seconds

Development of a Stand Density Management Diagram for Teak Forests in Southern India

  • Tewari, Vindhya Prasad;Alvarez-Gonz, Juan Gabriel
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.3
    • /
    • pp.259-266
    • /
    • 2014
  • Stand Density Diagrams (SDD) are average stand-level models which graphically illustrate the relationship between yield, density and mortality throughout the various stages of forest development. These are useful tools for designing, displaying and evaluating alternative density regimes in even-aged forest ecosystems to achieve a desired future condition. This contribution presents an example of a SDD that has been constructed for teak forests of Karnataka in southern India. The relationship between stand density, dominant height, quadratic mean diameter, relative spacing and stand volume is represented in one graph. The relative spacing index was used to characterize the population density. Two equations were fitted simultaneously to the data collected from 27 sample plots measured annually for three years: one relates quadratic mean diameter with stand density and dominant height while the other relates total stand volume with quadratic mean diameter, stand density and dominant height.

Assessment of Carbon Storage Capacity of Stands in Abandoned Coal Mine Forest Rehabilitation Areas over time for its Development of Management Strategy (폐탄광 산림복구지 관리방안 도출을 위한 산림복구 후 시간경과에 따른 임분탄소저장량 평가)

  • Mun Ho Jung;Kwan In Park;Ji Hye Kim;Won Hyun Ji
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The objective of this study was to develop a management strategy for the recovery of carbon storage capacity of abandoned coal mine forest rehabilitation area. For the purpose, the biomass and stand carbon storage over time after the forest rehabilitation by tree type for Betula platyphylla, Pinus densiflora, and Alnus hirsuta trees which are major tree species widely planted for the forest rehabilitation in the abandoned coal mine were calculated, and compared them with general forest. The carbon storage in abandoned coal mine forest rehabilitation areas was lower than that in general forests, and based on tree species, Pinus densiflora stored 48.9%, Alnus hirsuta 41.1%, and Betula platyphylla 27.0%. This low carbon storage is thought to be caused by poor growth because soil chemical properties, such as low TOC and total nitrogen content, in the soil of abandoned coal mine forest rehabilitation areas, were adverse to vegetation growth compared to those in general forests. DBH, stand biomass, and stand carbon storage tended to increase after forest rehabilitation over time, whereas stand density decreased. Stand' biomass and carbon storage increased as DBH and stand density increased, but there was a negative correlation between stand density and DBH. Therefore, after forest rehabilitation, growth status should be monitored, an appropriate growth space for trees should be maintained by thinning and pruning, and the soil chemical properties such as fertilization must be managed. It is expected that the carbon storage capacity the forest rehabilitation area could be restored to a level similar to that of general forests.

A Review of Forest Development Patten by the Length of Protection Period in Gangwondo Baekdudaegan Mountains (강원지역 백두대간 산림의 보호기간에 따른 임분 발달 양상 검토)

  • Chung, Sang Hoon;Hwang, Kwang Mo;Lim, Seon Mi;Kim, Ji Hong
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.133-144
    • /
    • 2014
  • This study was carried out to review the pattern of forest stand development for six Gangwondo Baekdudaegan Mountains which experienced different type and duration of intensive legal protection. Vegetation data from point sampling method were employed to classify community types by cluster analysis on the basis of the importance values of canopy tree species for the study areas. The names of classified communities were given by the composition of dominant tree species. The communities were also compared one another in terms of stand structure by species diversity index. The results indicated that National Parks (Seoraksan and Odaesan) had greater proportion of mixed mesophytic forest type which was supposed to progress further forest succession process so as to have more complex and diversified stand structure. On the other hand, ordinary forest areas (Seokbyeongsan and Deokhangsan) had greater proportion of the forest types which was dominatively composed of Quercus mongolica and Pinus densiflora. The forest types with large amount of these two species would tend to develop for relatively short period of time of 40-50 years after artificial disturbances. Hyangnobong of Natural Protection Area and Hambaeksan of Natural Ecosystem Conservation Area showed intermediate stand development pattern in between National Parks and ordinary forest areas. The period of intensive legal protection of the forest area was positively correlated with species diversity index (R=0.736), and noted that the forest which received intensive protection regulation for longer period tended to show more complex and diversified stand structure.

Modelling Growth and Yield for Intensively Managed Forests

  • Burkhart, Harold E.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.119-126
    • /
    • 2008
  • Growth and yield prediction methods, ranging from whole-stand models to individual-tree models, have been developed for forest types managed for wood production. The resultant models are used for a host of purposes including inventory updating, management planning, evaluation of silvicultural alternatives, and harvest scheduling. Because of the large investment in developing growth and yield models for improved genotypes and silvicultural practices for loblolly pine (Pinus taeda) in the Southern United States, this region serves to illustrate approaches for modelling intensively managed forests. Analytical methods and computing power generally do not restrict development of reliable growth and yield models. However, long-term empirical observations on stand development, which are time consuming and expensive to obtain, often limit modelling efforts. Given that growth and yield models are used to project present volumes and to evaluate alternative treatment effects, data of both the inventory type and the experimental type are needed. Data for developing stand simulators for loblolly pine plantations have been obtained from a combination of permanent plots in operational forest stands and silvicultural experiments; these data collection efforts are described and summarized. Modelling is essential for integrating and synthesizing diverse information, identifying knowledge gaps, and making informed decisions. The questions being posed today are more complex than in the past, thus further accentuating the need for comprehensive models for stand development.

  • PDF

Comparison of stand structure and growth characteristics between Korean white pine plantation and oak-dominated natural deciduous forest by thinning treatment

  • Lee, Daesung;Choi, Jungkee
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.85-98
    • /
    • 2022
  • Background: Korean white pine (Pinus koraiensis) is a major commercial species, and the importance of the oak trees (Quercus spp.) is increasing due to various factors such as environmental and ecological values. However, more information is required to clearly understand the growth characteristics of these species especially regarding thinning intensity. This study was performed to provide the basic information to develop the silvicultural guideline and field manual by analyzing tree and stand characteristics in line with thinning intensity in the Korean white pine plantation and oak-dominated natural deciduous forest. Results: Diameter at breast height (DBH) and volume changes by the thinning intensity in the Korean white pine plantation were significantly different from those in the oak-dominated deciduous natural forest. In particular, DBH distribution in the pine stand appeared that there were more large diameter trees as the thinning intensity was higher. DBH periodic annual increment (PAI) of the pine stand was higher as the thinning intensity was stronger and the growth period was shorter. This trend was similarly shown in the natural deciduous forest, but the amount of PAI was smaller than in pine stand. The volume PAI after thinning was not decreased over time. In each stand type, the PAI tended to be lower as stand density was higher. The volume PAI in the pine stand was significantly higher than that in the oak-dominated natural deciduous forest. Dead trees occurred the most in the unthinned plots of each stand type, and those were higher in the natural deciduous forest. Ingrowth trees were observed only in the natural deciduous forest, and its distribution was the lowest in unthinned plots; Korean white pine as ingrowth occurred the most frequently among many tree species. Conclusions: Different effects of thinning treatment on DBH and volume PAI, mortality, and ingrowth were observed for each stand. With respect to forest growth, Korean white pine plantation was superior to the oak-dominated natural deciduous forest. The results of this study offer fundamental information for the development of silvicultural guidelines for Korean white pine plantations and oak-dominated natural deciduous forests in Korea.

Prediction of Stand Structure Dynamics for Unthinned Slash Pine Plantations

  • Lee, Young-Jin;Cho, Hyun-Je;Hong, Sung-Cheon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.435-438
    • /
    • 2000
  • Diameter distributions describe forest stand structure information. Prediction equations for percentiles of diameter distribution and parameter recovery procedures for the Weibull distribution function based on four percentile equations were applied to develop prediction system of even-aged slash pine stand structure development in terms of the number of stems per diameter class changes. Four percentiles of the cumulative diameter distribution were predicted as a function of stand characteristics. The predicted diameter distributions were tested against the observed diameter distributions using the Kolmogorov-Smirnov two sample test at the ${\alpha}$=0.05 level. Statistically, no significant differences were detected based on the data from 236 evaluation data sets. This stand level diameter distribution prediction system will be useful in slash pine stand structure modeling and in updating forest inventories for the long-term forest management planning.

  • PDF

Development of a Site Productivity Index and Yield Prediction Model for a Tilia amurensis Stand (피나무의 임지생산력지수 및 임분수확모델 개발)

  • Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.

The Changes of Understory Vegetation by Partial Cutting in a Silvopastoral Practiced Natural Deciduous Stand

  • Kang, Sung Kee;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.2
    • /
    • pp.156-164
    • /
    • 2008
  • Recognizing the importance of the multi-purpose management of natural deciduous forest, this study was carried out to implement the partial cutting for stand regulation to examine agroforestry practice as well as other concurrent forest resource production, and to investigate the changes in stand characteristics and understory vegetation in a silvopasture practiced natural deciduous stand in the Research Forest of Kangwon National University, Korea. Three different partial cutting intensities (68.1%, 48.6%, and control) were performed in the unmanaged natural deciduous stand in order to improve the growing condition, especially light condition, for introducing some commercial herbaceous plants on the forest floor to establish agroforestry and/or silvopastoral system. Dominated by Quercus varibilis Blume (50.5%) and Quercus dentata Thum. ex Murray (42.6%), eight tree species were composed of the study forest, including poles of Pinus desiflora Siebold & Zucc and sapling of Pinus Koraiensis Siebold & Zucc. The total of 87 (13 tree species, 12 shrub species, 58 herbaceous species, and 4 woody climbers) vascular plant species were observed in study site after partial cutting treatments, while that of before partial cutting was 53 species (14 tree species, 8 shrubs species, 30 herbaceous species, and 1 woody climbers). The proportion of life form spectra in plot B was Mi (28.4%)-Na (23.0%)-Ge (17.5%)-Ch (10.8%)-He (9.5%)-MM (6.7%)-Th (4.1%). No statistically significant differences were observed in changes of life form spectra from before to after partial cutting treatment and among partial cutting gradients in this study. Partial cutting and scratching for forage sowing made plants invade easily on the forest floor, and light partial cutting (LPC) plot (500 stems/ha) had much higher number of undersory species than those of heavy partial cutting (HPC) plot (310 stems/ha) and control plot (1,270 stems/ha).

Root Distribution in Natural Stand and Plantation of One-Age Class Pinus densiflora for. erecta (금강소나무 1영급 천연임분과 인공임분의 직경별 뿌리발달)

  • Na, Sung-Joon;Kim, Jung-Hwan;Lee, Do-Hyung
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.33-39
    • /
    • 2011
  • This study was conducted to distribution characteristic of root diameter class between natural and planted stands of one-age class in Pinus densiflora for. eracta in Gangwon. Root development presented that 0.5-2.0 mm diameter class was large part in total root number and length but 0.5-2.0 mm diameter class have a low distribution in each stand. Below 5.0 mm diameter class between natural and planted stands observed outstanding natural stand more than planted stand, but reverse over 5.0 mm diameter class. Root development depending on soil level of vertical and horizontal was presented various natural stand more than planted stand because root distribution of planted stand was concentrated low soil level in 10 cm of soil depth and 20 cm of soil horizontal layer. We can understand that the root distribution presented different between natural and planted stand, therefore this result can used as a basic information for correct of outplanting.

The Evaluation of Correlation between Disturbance Intensity and Stand Development by Natural Forest Community Type Classification (자연림 군집형 분류에 의한 교란의 정도와 임분 발달 사이의 관련성 검토)

  • Kim, Ji Hong;Hwang, Kwang Mo;Kim, Se Mi
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.219-225
    • /
    • 2013
  • The correlation between disturbance intensity and stand development was evaluated on the basis of natural forest community type classification in areas of Baekhaksan (more disturbed area) and Hwangaksan (less disturbed area). The vegetation data were collected by point-centered quarter sampling method, and they were subjected to cluster analysis for classifying community types and to analysis of species composition and species diversity for reviewing ecological characteristics. By the method of cluster analysis, natural forests of Baekhaksan were classified into Quercus forest community, Pinus densiflora community, Q. variabilis community, and Q. mongolica community. Those of Hwangaksan were divided into P. densiflora community, Q. mongolica community, Q. forest community, and Mixed mesophytic community. It is presumed that more developed and less disturbed forest area shows multiple species community pattern and more diversified structure than less developed and more disturbed forest area. In Korean peninsula, the abundance of red pine may play an important indicator to estimate the developmental pattern of the forest after artificial disturbance. The overall evaluation indicated that less disturbed Hwangaksan area had more developed stand pattern with mixed mesophytic community, more complicated species composition, and higher species diversity than Baekhaksan area.