• Title/Summary/Keyword: Forest road design

Search Result 36, Processing Time 0.019 seconds

Studies on Planning Method of Optimum Forest Road (최적임도배치계획(最適林道配置計劃)에 관(關)한 연구(硏究))

  • Cha, Du Song;Lee, Joon Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.139-145
    • /
    • 1992
  • A planning method of optimum forest road was tested in the compartment II of Kangweon National University Forests by using a digital terrain model under four evaluation factors, i. e., minimum road length, average skidding distance, exploitative index, and ratio of inaccessible points. The results of the study were as follows : 1. Optimum forest road design based on the minimum road length was shown as 6035.6m, 12.73m/ha, 279.9m, 1.43, and 15.7% for total road length, forest road density, average skidding distance, exploitative index, and ratio of inaccessible points, respectively. 2. Optimum forest road design based on the average skidding distance was shown as 7828.5m, 16.52m/ha, 198.4m, 1.31, and 4.0% for total road length, forest road density, average skidding distance, exploitative index, and ratio of inaccessible points, respectively. 3. Optimum forest road design based on the exploitative index was shown as 7410.6m, 15.64m/ha, 210.9m, 1.26, and 5.0% for total road length, forest road density, average skidding distance, exploitative index, and ratio of inaccessible points, respectively. 4. Optimum forest road design based on the ratio of inaccessible points was shown as 8307.1m, 17.53 m/ha, 184.9m, 1.29, and 2.5% for total road length, forest road density, average skidding distance, exploitative index, and ratio of inaccessible points, respectively.

  • PDF

Effects of Forest Environmental Factors and Forest Road Structures on the Stability of Forest Road in Granite Areas (화강암지역의 산림환경 및 도로구조인자가 임도의 안정성에 미치는 영향)

  • Yim, Byung-Jun;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • To investigate the influence of forest road characteristics and site conditions on the stability of forest-road in granite area, four forest roads had been selected in Kyongbuk regions. The total of 13 road characteristic variables were evaluated by the discriminant analysis. The factors influencing the stability of forest road were bed rock, slope length, coverage, hardness, side-ditch erosion and road width. But aspect and soil texture were not significant for the stability in this area. In the correlation between forest environment and road structure, hardness and bed rock was highly significant in stability group, and coverage and side-ditch erosion was highly significant in instability group. 75 of 175 segments were instable whereas the others were stable. The centroids value by discriminant function in the stability and instability were estimated to 3.0585 and -1.9116, respectively. The stability criterion of forest road was discriminated from the centroids value of the each group. The main factors contributing the stability of forest road were significant in order of side-ditch erosion, coverage, soil texture, elevation, gradient, slope length and construction year. The prediction rate of discriminant function for stability evaluation of forest road was as high as 97.44%. In conclusion, the forest road structure factors such as length, coverage and slope gradient were controlled by construction techniques. If the factors like those should be considered in design, construction and forest road management, the stability of forest road may increase more. And also, it is necessary to take slope protection measures like small terraces and retaining walls for stability of cut slope.

  • PDF

A Study on Development Standard Calculation Program of Forest Road Drainage Facilities (임도 배수시설 규격 산정 프로그램 개발에 관한 연구)

  • Choi, Yeon-Ho;Lee, Joon-Woo;Kim, Myeong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.25-33
    • /
    • 2011
  • The purpose of this study is to develop a standard calculation program of forest road drainage facilities that may help forest road designers to design forest road drainage facilities more conveniently and precisely. Especially, the characteristics of this program is that the forest road designers may calculate the amount of outflow in the basin using rainfall intensity data conveniently, without the data designers should acquire through site measurements when they carry out indoor preliminary measurements before they go out for outdoor measurements. In this manner, excessive design may be restrained by offering minimum standard calculation for drainage structures. And also this study was designed to facilitate proper layout of drainage structures by calculating outflow discharge of each basin where forest roads will be installed. Especially, this study will contribute to leveling-up of forest design techniques as the researcher has prepared the reports on whole process of drain pipe installation and provided them in the form of computer file or printout, which show a rational design process, and make it possible to modify in case of an error.

Developing a Computer Model for Forest Road Design (임도설계(林道設計) 자동화(自動化)를 위한 전산(電算)모델의 개발(開發))

  • Chung, Joo Sang;Chung, Woo Dam
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.333-342
    • /
    • 1995
  • A user - oriented computer model to aid designing forest road is developed to release the burden by increasing efficiency of time - consuming and laborious road design works. In this paper, the structures and functions of the model are discussed. The model consists of functional modules : 1)input module to treat survey data and design criteria ; 2)road design module to generate preliminary road layout, horizontal and vertical curvatures and curve widening ; 3)earthwork analysis module to determine the economic mass movement ; 4)report writer module to produce hard copies of engineering drawings for plan views, cross - sections and profiles, earthwork calculation sheets and mass movement diagrams. In addition, the report writer also provides the information on earthwork disturbance along the cut and - fill slopes. The modules are designed to be fully - integrated to enable the users to perform engineering analyses and evaluate design alternatives in a series of road - design procedures.

  • PDF

Evaluation of Horizontal Position Accuracy in Forest Road Completion Drawing (임도 준공도면의 수평위치 정확도 평가에 관한 연구)

  • Kim, Myeong-Jun;Kweon, Hyeong-Keun;Choi, Yeon-Ho;Yeom, In-Hwan;Lee, Joon-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2010
  • Forest roads of 16,424km have been constructed as infrastructure for efficient management of forest. The demand of forest road have been also increased steadily with SOC conception for forest management and wood production. But, accuracy verification by completion drawing of forest road needed aspects extration of geographic information to sound like forest road construction and completion drawing. However, verification for completion drawing has not ascertained. This study carried out the evaluation for position accuracy about constructed forest road in Chungcheongnam-do for evaluating horizontal position accuracy of completion drawing of forest road. In result, first of distance of completion drawing and real route designed completion drawing longer than the real route as Gongju 83m, Seosan 66m, Nonsan 27m and Dangjin 19m, respectively. Second, RMSE by point-correspondence was 11m~14.7m, buffering analysis appeared difference of 18~24m. Finally, index of shape was the similar completion and real route through 6.5~7.4 and data information of forest road corresponds to be perfect. For such reasons, the existing completion drawings have a problem that it cannot use graphic information for drawing digital map according to the regulation, and there is an urgent need for improvement to solve this problem in the process of design and construction.

Work analysis of route survey work on forest-road (임도 노선측량 작업의 작업분석)

  • Kweon, Hyeong-Keon;Lee, Joon-Woo;Choi, Sung-Min;Yeom, In-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.209-214
    • /
    • 2013
  • This study examined the work time, work posture, and work intensity for the actual measurement step in forest road the design work that was being carried out. The measurement of the forest road was being carried by a team of three workers and a team of four workers. The examination of work time found that the measurement of 1km took about 8 hours for the four-worker team and 12 hours for the three-worker team. The examination of work intensity found that the energy metabolic rates of the three-worker team were lower than four-worker team. Because their energy consumption per minute decreased as their work time and rest time increased. Furthermore, when appropriate rest time was applied according to work time, the energy metabolic rate decreased and the work intensity became lower. The four-worker team was more advantageous from the time and cost aspects of the forest road measurement work. Furthermore, as the rest time was very low compared to the work time, more efficient forest road measurement work would be possible if the work intensity was lowered by considering the rest time when calculating the standard work time.

Studies on Erosion Amount of the Newly - Constructed Forest Road (신설임도(新設林道)의 초기침식량(初期侵蝕量)에 관(關)한 연구(硏究))

  • Jung, Do-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.319-332
    • /
    • 1995
  • This research was carried out to investigate the influences of forest road characteristics and rainfalls on the amount of erosion on the newly - constructed forest road in the Research Forests of Seoul National University located in Mt. Backwoon - san, Kwangyang. Amount of soil erosion on the newly - constructed forest road was measured for 2 years since the forest road construction. Using the stepwise multiple regression method, amount of soil erosion from cut - slopes, fill - slopes, road surfaces, and side - ditches were seperately expressed as a function of statistically significant road design and rainfall factors, and multiple regression models to estimate the amount of soil erosion were significant to explain the variance in erosion by each structures. According to results of this study, amount of erosion from the newly - constructed forest road was estimated as much as 668.51m/km for 2 years. Out of total amount of soil erosion, 21.9%(144.27m/km) from cut - slopes, 39.8%(261.89m/km) from fill - slopes, 8.1%(53.33m/km) from road surfaces, and 30.2%(199.02m/km) from side - ditches were occurred.

  • PDF

Development of Forest Road Network Model Using Digital Terrain Model (수치지형(數値地形)모델을 이용(利用)한 임도망(林道網) 배치(配置)모델의 개발(開發))

  • Lee, Jun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.363-371
    • /
    • 1992
  • This study was aimed at developing a computer model to determine rational road networks in mountainous forests. The computer model is composed of two major subroutines for digital terrain analyses and route selection. The digital terrain model(DTM) provides various information on topographic and vegetative characteristics of forest stands. The DTM also evaluates the effectiveness of road construction based on slope gradients. Using the results of digital terrain analyses, the route selection subroutine, heuristically, determines the optimal road layout satisfying the predefined road densities. The route selection subroutine uses the area-partitioning method in order to fully of roads. This method leads to unbiased road layouts in forest areas. The size of the unit partitiones area can be calculated as a function of the predefined road density. In addition, the user-defined road density of the area-partitioning method provides flexibility in applying the model to real situations. The rational road network can be easily achived for varying road densities, which would be an essential element for network design of forest roads. The optimality conditions are evaluated in conjuction with longitudinal gradients, investment efficiency earthwork quantity or the mixed criteria of these three. The performance of the model was measured and, then, compared with those of conventional ones in terns of average skidding distance, accessibility of stands, development index and circulated road network index. The results of the performance analysis indicate that selection of roading routes for network design using the digital terrain analysis and the area-partitioning method improves performance of the network design medel.

  • PDF

Studies on the Design of Forest Road Network for Mechanized Yarding Operations (II) - Optimal road spacing and density - (기계화(機械化) 집재작업(集材作業)을 위한 노망정비(路網整備)에 관(關)한 연구(硏究)(II) - 적정임도간격(適正林道間隔) 및 임도밀도(林道密度) -)

  • Cha, Du Song;Cho, Koo Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.299-310
    • /
    • 1994
  • This study was carried out to examine the optimal road spacing and road density to minimize the total harvesting cost(road construction cost plus yarding cost) for mechanized yarding system to roadside by one - and two-stage two-way in Forestry build-up region. Chunchon-kun, Kangwon-do. The estimated road construction costs were ranged from ten million won to sixty million won per km. The results have indicated that cable crane was appropriate for yarding machine by one-stage, two-way, and estimated optimal road spacing was 1,698m~4,192m, averaged 3,087m, and road density was 3.44m/ha~8.44m/ha, and averaged 5. 12m/ha. In hilly terrain, combination of medium yarder and Logging bogie was suited to yarding machine by two-stage, two-way, and calculated optimal road spacing was 1,483m~3,481m, averaged 2,589m, and road density was 4.05m/ha~9.46m/ha, averaged 5.90m/ha. In steep terrain, combination of medium yarder and jinsung winch was suited, and estimated optimal road spacing was 1,693m~3,982m, averaged 2,960m, and road density was 3.68m/ha~8.64m/ha, averaged 5.38m/ha.

  • PDF

The Techniques Development for the Possibility Area Analysis of Yarding Operation and the Forest-road Network Arrangement using GIS (GIS를 이용한 집재작업 가능구역 분석 및 노망배치를 위한 기법 작성)

  • Kwon, Hyun-Jung;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.143-155
    • /
    • 2013
  • In order to establish efficient timber harvesting system and provide the necessary data for the system establishment, the techniques to identify areas possible of the yarding-operation and design forest-road networks were newly developed and the applicability of the techniques are tested in this study. The new techniques were developed based on ArcGIS, particularly with utilizing the Viewshed Analysis Tool. From the results of the identification of the possible yarding-operation areas, it is found that the percentage of possible yardingoperation area decreases with the increment of maximum yarding distance due to terrestrial effects. When forest road networks are extended in impossible yarding-operation sites, the area of possible yarding-operation sites increases. If a forest road network is newly designed, its overall extension is altered, resulting in changes in the possible yarding-operation areas. Through the comparative analysis among the different possible yardingoperation areas from different forest road networks, the maximization of the yarding-operation possible area can be achieved. The results from this study can be utilized for establishing more efficient timber-harvesting system and developing GIS-based programs to manage the system.