• Title/Summary/Keyword: Forest degradation

Search Result 277, Processing Time 0.028 seconds

Reduction of Energy and Food Security in DPRK due to Deforestation

  • SHIN, Eunsoo Justin;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.63-67
    • /
    • 2018
  • The Democratic People's Republic of Korea, or the DPRK, is one of the poorest country in world facing chronic economic, energy and food security issues. Prolonged improper management of economic and natural resources has led to extreme poverty, malnutrition and critically vulnerability to nature's forces. Presistent deforestation and forest degradation in the DPRK has national and global consequences which has attracted attention from international community, whose offering financial and technical assistance for targeted interventions. Through REDD+ programs, the DPRK has the opportunity to establish its credentials as a responsible nation while improving the quality of life of its population. This study offers an enabling context under which suitable climate change action related to forestry can be identified and implemented in the DPRK.

Properties and Biodegradation of Polymer for Afforestation Seedling Mulching Mat (조림묘목 멀칭매트 제조용 고분자의 물성 및 생분해성)

  • Kim, Kang-Jae;Kim, Hyoung-Jin;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.8-14
    • /
    • 2009
  • Characteristics of biodegradable polymers for mulching mat for seedling were investigated. The solvent solubility of polymers is highest in methylene chloride and chloroform. Tensile strength and breaking elongation of polymer dipped paper were increased to the 0.43-1.46 kN/m and the 0.03-0.26%, respectively. PLAs had showed lower glass transition temperature and melting point than those of polyester. As a result, PLA should be most suitable polymer for mulching mat manufacturing. After biodegradation of polymers by lipase, surface of polymers was change to more flat due to enzymatic degradation.

Properties of Biodegradable Polymer and Afforestation Seedling Mulching Mat (생분해성 고분자와 멀칭매트의 물성)

  • Kim, Kang-Jae;Kim, Hyoung-Jin;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • Characteristics of mixing biodegradable polymers and polymer impregnated paper for mulching mat for seedling were investigated. The mixed film of 70% PLA was most easily biodegradable. The surface of polymer films were changed to more rough due to enzymatic degradation of lipase. Tensile strength and breaking elongation of PLA mixed films were increased to the 0.04-0.31 kN/m and the 0.17-0.96%, respectively. With higher PLA contents, intensities of ester originated carboxyl group(about $1,748cm^{-1}$) were increased. Physical properties of prepared mulching mats were increased with PLA contents and stiffness of mulching mat was not so much changed.

Degardatrion of Cellulosic Fibers by Electron Beam Irradiation

  • Han, Sung-Ok;Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.20-25
    • /
    • 2007
  • Henequen fibers were treated by electron beam irradiation and by NaOH to make surface modification for better bonding in the manufacture of biocomposite. Impurity removal and carbonyl group formation were noticed in the previous study by electron beam irradiation, but extensive cellulose degradation were also noticed. To evaluate the effects of electron beam irradiation on cellulosic fibers further, henequen fibers, cotton pulp, cotton fibers, and cellophane were irradiated by electron beam, and their changes of cellulose viscosity, chemical composition, and tensile strength were measured and analyzed.

Estimation of Net Primary Production (NPP) of Inner Mongol in China by MODIS Data

  • Park, Jong-Geol;Yasuda, Yoshizumi;Ohkuro, Tosiya
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.447-449
    • /
    • 2003
  • Remotely sensed data can be used to estimate biomass production using methodologies relating vegetation indices to light absorption or to leaf photosynthetic capacity. The considerations of both light absorption and photosynthetic capacity in remote sensing-based modeling to estimate biomass production or NPP was introduced based upon Monteith model NPP is one of a evaluation of land degradation. NPP was estimated from annual maximum NDVI by MODIS data. It was known that NPP of the grassland that except the forest and the farming ground was distributed between 50-200g /m2.

  • PDF

Studies on the Desertification Combating and Sand Industry Development(I) - Present Status and Countermeasures for the Combating Desertification in China - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(I) - 중국(中國)의 사막화현황(沙漠化現況) 및 방지대책(防止對策) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Jeon, Gi-Seong;Kim, Kyung-Hoon;Choi, Hyung-Tae;Lee, Seung-Hyun;Lee, Byung-Kwon;Kim, So-Yeon;Lee, Sang-Ho;Jeon, Jeong-Ill
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.45-76
    • /
    • 2000
  • The purposes of this study were to investigate and understand the present status of various types of "deserts", such as sand desert, gravel desert, rock desert, earth desert, salt desert, desert, rocky desert, gobi desert, sandy desert, clay desert, etc., and the general countermeasures for the combating "desertification" "desertization", and to develop the technologies on the revegetation and restoration for the combating desertification in China. The methods of this study were mainly composed of field surveys on the several experimental sites and research institutes related to combating desertification in China, and examinations on the various technologies for the combating desertification at the Daxing Experimental Station of Beijing Forestry University. The conclusion from this study may be summarized as follows; 1. Status and tendency of desertification in China : China is one of the countries seriously threatened by desertification. Desertification affected areas in China are mainly distributed in arid, semi-arid and dry sub-humid areas in China, covering the most regions of the Northeast China (eastern region of Inner-Mongolia), the northern part of the North China (middle and western region of Inner-Mongolia, Shaanxi, Ningsha, Gansu) and the western part of the Northwest China (Xinzang, Qinghai, Xizang). The total area affected by desertification in China is approximately 2.622 million $km^2$. It covers 27.3% of the total territory of China. Until recently, it is estimated that the annual spreading ratio of desertification in China is 2,460 $km^2$. Therefore, desertification is mostly serious problems facing to the Chinese people. 2. The causes and environmental effect of desertification : The desertification in China is mainly caused by compound factors, including natural condition and human activities. In China, the desertification is started by the decrease of precipitation, continuous dry and drought, strong wind, wind and water erosion, land degradation and loss of natural vegetation caused by climate variation, and accelerated by the human activities, such as over-cultivating, over-grazing, over-cutting of woods, irrational use of water resources. Because desertification has affected the geographical features, soil nutrients contents, salinity, vegetation coverage and the functions of ecosystem, the environmental deteriorations in the desertification affected areas are very seriously. 3. The fundamental strategies of combating desertification in China are the increase of education and awareness of people through various mass media, the revision of laws to guarantee operation of Desertification Combating Law and to improve many relating laws and regulations, the application of advanced technologies and training of experts, the establishment of discriminative policies, and increasing arrangement of budget-investment, and so on. China, as a signed country in UNCCD, has made efforts for the combating desertification. Korea is also signed country in UNCCD, so we should play an important role in the desertification combating projects of China for the northest asia and global environmental conservation as well as environmental conservation of Korea.

  • PDF

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

Evaluation of Primary Thermal Degradation Feature of M. sacchariflorus After Removing Inorganic Compounds Using Distilled Water (증류수를 이용한 거대억새 내 무기성분 제거 효과 및 열분해 특성 변화 관찰)

  • Kim, Jae-Young;Oh, Shinyoung;Hwang, Hyewon;Moon, Yoonho;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.276-286
    • /
    • 2013
  • The goal of this study was to investigate change of thermal decomposition feature of miscanthus (Miscanthus sacchariflorus) after removal of inorganic constituents using distilled water (D.I-w; 30, 60 and $90^{\circ}C$). The carbon content was increased whereas the oxygen content was decreased with the temperature of D.I-w treatment. Moreover, ash content was slightly decreased from 4.6% of control to 3.2% of $90^{\circ}C$ D.I-w treated sample. Results of total monomeric sugar contents and X-ray diffraction (XRD) analysis showed that structural changes of cellulose/hemicellulose regions did not occurr during D.I-w treatment. Results of inductively coupled plasma emission spectrometer (ICP-ES) showed that miscanthus has the largest amount of inorganic constituents such as potassium (5,644 ppm), phosphorus (3,995 ppm), magnesium (1,403 ppm) and calcium (711 ppm). Thermogravimetric analysis (TGA) confirmed that the yield of char slightly decreased whereas the yield of volatiles increased with increasing D.I-w treatment temperature. In addition, differential thermogravimetric analysis (DTGA) indicated that the maximum decomposition rate ($V_M$) and temperature ($T_M$) corresponding to VM were varied from $0.82%/^{\circ}C$, $360.60^{\circ}C$ of control to $1.17%/^{\circ}C$, $362.62^{\circ}C$ of $90^{\circ}C$-D.I-w treated sample.

A Study on Vegetation Management Plan for Improvement of Gugok Landsacpe of Hwayang Valley in Songnisan National $Park^{1a}$ (속리산국립공원 화양계곡의 구곡경관 개선을 위한 식생관리방안 연구)

  • Han, Bong-Ho;Kwak, Jeong-In;Jang, Jea-Hoon;Bae, Jeong-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.2
    • /
    • pp.194-207
    • /
    • 2009
  • The study is to suggest a management method for improvement of natural and cultural landscape of Hwayang valley which is degraded in Songnisan National Park. It was carried out to study original shape of landscape of it and analyse nine major properties of Hoayang Gugok, based on old literatures. The landscape of Gugok was composed of rocks and small ponds, Pinus densiflora community and most of them were degraded by the situation of covered rocks by growth of vegetation, destructed small ponds by sedimented sands and degradation of natural landscape by artificial forest. Vegetation landscape of artificial forest composed of Populus tomentiglandulosa, Robinia pseudo-acacia, Pinus koraiensis in periphery of the valley was not matched with natural landscape. The goal of landscape management was established to conserve natural and cultural landscape in Joseon Dynasty. For this, It was needed to protect landscape values of gugok through the management of vegetation and visitors. In addition, it was required to provide opportunity to easily access to the landscape of Gugok. As a management method of vegetation, it was suggested to maintain P. densiflora community and to restore artificial forest to natural forest through the density management.

Effect of the Extracts from the Leaves and Branches of Sageretia thea on β-catenin Proteasomal Degradation in Human Colorectal and Lung Cancer Cells (상동나무(Sageretia thea) 잎과 가지추출물의 대장암과 폐암세포의 β-catenin 분해 유도 활성)

  • Kim, Ha Na;Park, Gwang Hun;Kim, Jeong Dong;Park, Su Bin;Eo, Hyun Ji;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.153-159
    • /
    • 2019
  • In this study, we evaluated the effect of branch (STB) and leave (STL) extracts from Sageretia thea on ${\beta}-catenin$ level in human colorecal cancer cells, SW480 and lung cancer cells, A549. STB and STL dose-dependently suppressed the growth of SW480 and A549 cells. STB and STL decreased ${\beta}-catenin$ level in both protein and mRNA level. MG132 decreased the downregulation of ${\beta}-catenin$ protein level induced by STB and STL. However, the inhibition of $GSK3{\beta}$ by LiCl or ROS scavenging by NAC did not block the reduction of ${\beta}-catenin$ protein by STB and STL. Our results suggested that STB and STL may downregulate ${\beta}-catenin$ protein level independent on $GSK3{\beta}$ and ROS. Based on these findings, STB and STL may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer and lung cancer.