• Title/Summary/Keyword: Forest Soil

Search Result 2,521, Processing Time 0.027 seconds

A study of characteristics of cumulative deposition of fallout Pu in environmental samples

  • Lee, Myung Ho;Song, Byoung Chul;Jee, Kwang Yong;Park, Yeong Jae;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2006
  • This paper describes the cumulative deposition of fallout Pu in soil and lichen at the present time and give the characteristics of fallout Pu deposits in the soil. In the soil of the forest, the accumulated depositions of $^{239,240}Pu$ were estimated to be in the range of 34.0 to $101.2Bq\;m^{-2}$ with an average value of $65.3{\pm}21.6Bq\;m^{-2}$. The average inventory of $^{239,240}Pu$ in the forest was calculated to be two times higher than that in the hill. Also, the deposited activities of $^{239,240}Pu$ in cultivated soil were significantly lower than those in the hill or forest. However, the cumulative depositions of fallout Pu in the volcanic ash soil on Cheju Island were much higher than those in the forest and hill soils. The measured activity concentrations of Pu isotopes in lichens and mosses showed large variations, due to characteristics of species and life span of lichen and moss colonies. From depth profiles, it was found that most of the fallout Pu has been accumulated in upper 10 cm layer of soil. Except for a few cases, the concentrations of $^{239,240}Pu$ in soil tended to decrease exponentially with increasing soil depth. Among parameters affecting the cumulative deposition of fallout Pu, organic substances and rainfall play an important role in the retention and relative mobility of fallout Pu in the soil. However, pH showed a weak correlation with the deposition of fallout Pu in the soil. From sequential leaching experiments, Pu was found to be associated predominantly with the "organic" and "oxy-hydroxy" fractions. Both the activity ratios of $^{238}Pu/^{239,240}Pu$ and $^{241}Pu/^{239,240}Pu$ in soils, lichens and mosses and the atomic ratios of $^{240}Pu/^{239}Pu$ in soils are close to those observed in the cumulative deposit global fallout from nuclear weapon testings. The results obtained from this research make it possible to interpret and predict the behavior of fallout Pu under natural conditions.

Prospects and Effect of Forest Fertilization (산지(山地) 시비(施肥)에 관(關)한 고찰(考察))

  • Lee, Chun Yong;Park, Bong Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.109-115
    • /
    • 1988
  • Decrease of the planting area reduced fertilized area of forest. To accomplish the aims of natural regeneration, mini-rotation plantation, diminishing the rotation length, maintaining healthy forest and production of good quality timber, forest fertilization should be continued. In order to improve the deteriorate situation, slow-release fertilizer applied on top soil needs to be developed and aerial application will give diminished cost. Fertilization with tending before tree felling in forest will increase the effect of fertilizer more, Proper quantity of fertilizer by tree species and soil fertility should be found out in the future, Street trees, environmental forest near city and ornamental trees in the residential areas could be also included in this field.

  • PDF

The Study of vegetation Structure and Soil Characteristics in Koelreuteria paniculata Communities of Anmyondo and Gunhung-Myon, Taean-Gun (안면도 및 태안군 근흥면 모감주나무군락의 식생구조 및 토양특성에 관한 연구)

  • Song, Ho-Kyung;Park, Kwan-Soo;Lee, Sun;Lee, Mi-Jung;Ji, Yoon-Eui
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • The vegetation structure and soil characteristics in Koelreuteria paniculata communities of Taean-Gun and Anmyondo were studied. The Koelreuteria paniculata community in Anmyondo had two vegetation layers, lower-tree and herb layers, but the Koelreuteria paniculata community in Anmyondo had three vegetation layers, subtree, shrub, and herb layers. Also the Koelreuteria paniculata was only the species of subtree layers in the Koelreuteria paniculata community of Anmyondo, but the subtree layer in the Koelreuteria paniculata community of Taean-Gun consisted of Pinus thunbergii, Cornus walteri, Celtis jessoensis, Celtis sinensis, and Evodia danielii. The soil organic matter, total N, available P, CEC, and exchangeable K, Ca, Mg, and Na concentrations were greater in the two Koelreuteria paniculata community than in the adjacent forest. The range of soil pH in the two Koelreuteria paniculata communities were 6.3-7.0, but those in adjacent forests were 4.7-5.5. [Dierssen scale, Vegetation classification, Forest soil] .

  • PDF

Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla

  • Jang, Rae-Ha;Jeong, Heon-Mo;Lee, Eung-Pill;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to $CO_2$ stocks. Results: The amount of plant organic carbon was $13.60ton\;C\;ha^{-1}year^{-1}$ in 2012 and $14.29ton\;C\;ha^{-1}year^{-1}$ in 2013. And average organic carbon introduced to forest floor through litter production was $0.71ton\;C\;ha^{-1}year^{-1}$. Organic carbon distributed in forest floor litter layer was $0.73ton\;C\;ha^{-1}year^{-1}$ on average and accumulated organic carbon in soil was $51.13ton\;C\;ha^{-1}year^{-1}$ on average. In 2012, Amount of released $CO_2$ from soil to atmosphere was 10.93 ton $CO_2ha^{-1}year^{-1}$. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was $-1.74ton\;C\;ha^{-1}year^{-1}$ releasing more carbon than it absorbed.

The Changes of Forest Vegetation and Soil Environmental after Forest Fire (산불 후 산림식생 및 토양환경의 변화)

  • Oh, Ki-Cheol;Kim, Jong-Kab;Jung, Won-Ok;Min, Jae-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.19-29
    • /
    • 2001
  • This study was carried out to examine the recovery of forest ecosystem at the burned areas of coniferous (Mt. Chosdae) and broad leaved forest (Samsinbong in Mt. Chiri) by investigating the changes of forest vegetation. The results obtained are summarized as follows; 1. In the Samsinbong, the total number of species appeared at the burned area were 5 species at tree layer, 11 species at sub-tree layer and 24 species at herb layer, and at the unburned area were 5 species at tree layer, 14 species at sub-tree layer, 18 species at shrub layer and 23 species at herb layer, respectively. In the Mt. Chosdae, the total number of species appeared at the burned area only showed to 83 species at herb layer, and at the unburned area were 7 species at tree layer, 13 species at sub-tree layer, 21 species at shrub layer and 46 species at herb layer, respectively. 2. In the soil chemical properties of the burned area of Samsinbong, pH was 5.8, and contents of Organic matter, Total nitrogen, Available $P_2O_5$, Exchangeable $K^+$, Exchange $Ca^{{+}{+}}$ and Exchange $Mg^{{+}{+}}$ were 7.42%, 0.73%, 28.5mg/kg, 1.3me/100g, 13.3me/100g and 2.2me/100g, respectively. But they showed a tendency to decrease by passing the time. In the soil chemical properties of the burned area of Mt. Chosdae, pH was 5.3, and contents of Organic matter, Total nitrogen, Available $P_2O_5$, Exchangeable $K^+$, Exchange $Ca^{{+}{+}}$ and Exchange $Mg^{{+}{+}}$ were 6.42%, 0.25%, 24.4mg/kg, 0.7me/100g, 3.7me/100g and 2.1me/100g, respectively, and they also showed a tendency to decrease by passing the time. 3. An the burned and unburned areas of Samsinbong, the total evolved amounts of soil respiration were $4,049.1mg/m^2/h$ and $9,950.0mg/m^2/h$, respectively. An the burned and unburned areas of Mt. Chosdae, the total evolved amounts of soil respiration were $4,392.4mg/m^2/h$ and $8,286.5mg/m^2/h$, respectively.

  • PDF

Side-Effects of SCB Liquid Fertilizer on Seed Germination and Physiological Activity of Pinus densiflora and Maackia amurensis Seedling (소나무와 다릅나무의 종자 발아와 유묘의 생리적 활성에 대한 SCB 액비 효과)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Hyun-Suk;Yoo, Se-Kuel;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.255-262
    • /
    • 2009
  • This study was carried out to investigate the effects of SCB (Slurry Composting & Biofiltration) liquid fertilizer on seed germination properties and physiological activities of P. densiflora and M. amurensis seedling on the sand and tailing soil. Seed germination of two, tree species on the sand and tailing soil was delayed and inhibited under SCB treatment. Seedling growth of two species was also reduced by SCB application, and the growth reduction was associated with its concentration. Chlorophyll content decreased in the leaves of SCB-treated P. densiflora but increased in the leaves of SCB-treated M. amurensis when compared to control seedlings irrigated with tap water. On the other hand, Malondialdehyde (MDA) content, an indicator of lipid peroxidation, decreased in the leaves of SCB-treated P. densiflora, whereas it increased in the leaves of SCB-treated M. amurensis. Antioxidative enzyme activities in the leaves of P. densiflora increased on sand soil treated with 1/6 diluted SCB solution and on tailing soil treated with 1/3 diluted one, whereas those of M. amurensis seedlings increased only on tailing soil applied with the normal SCB solution and the 1/3 diluted SCB solution, respectively. These results were considered as side-effects of SCB liquid fertilizer which might accumulate salt through the physical changes in the soil.c

Fuel Management and Experimental Wildfire Effects on Forest Structure, Tree Mortality and Soil Chemistry in Tropical Dry Forests in Ghana

  • Barnes, Victor R;Swaine, Mike D;Pinard, Michelle A;Kyereh, Boateng
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.3
    • /
    • pp.172-186
    • /
    • 2017
  • The effects of application of fuel-reduction treatment in wildfire management has not been tested in dry forests of Ghana. Therefore, the short-term ecological effects of prescribed burning and hand thinning treatments followed by experimental wildfire were investigated in degraded forests and Tectona grandis forest plantations in two forest reserves of different levels of dryness in Ghana. The results showed that more trees were killed in prescribed burning (average of 41% in degraded forest and 18% in plantations) than hand thinning (7.2% in degraded forests and 8% in plantation). More tree seedlings were also killed in prescribed burning (72%) than hand thinning (47%). The mortality of trees and seedlings were greater in Worobong South forest, a less dry forest reserve than the Afram Headwaters forest, a drier forest reserve. Fuel treatment especially prescribed burning compared to the control reduced wildfire effects on forest canopy particularly in the less dry forest and tree mortality especially in the drier forest. Prescribed burning temporarily increased pH, exchangeable potassium (52%) and available phosphorus (82%) in the surface soils of the entire plots. The two fuel treatment methods did not have much influence on basal area, organic matter and total nitrogen. Nevertheless, they were able to reduce the adverse wildfire effects on soil pH, exchangeable potassium, available phosphorus, organic matter and total nitrogen concentrations. Fuel treatments therefore have potential application in dry forest management in Ghana due to their ability to retain important forest ecological traits after a wildfire incidence.

Early Changes in Vegetation after the Construction of 'the Ecological Forest' in Youido Park (여의도공원 내 조성된 '자연생태의 숲'의 초기 식생 변화)

  • Lee, Sang Won;Kim, Dong Yeob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.41-51
    • /
    • 2001
  • 'The Ecological Forest' in Youido Park was intended to be an artificial forest in urban center, following the form of natural forests in central Korea. This study was to investigate the planting plan and the vegetation change of 'the Ecological Forest' and to compare it with natural forests of similar plant composition. The natural forests had slopes between $12^{\circ}$ and $21^{\circ}$, whereas 'the Ecological Forest' had slopes between $2^{\circ}$ and $6^{\circ}$. It was unlikely that the slope condition was adequate to show 'toposequence succession' at 'the Ecological Forest'. The soil bulk density and soil hardness of 'the Ecological Forest' were higher than those of the natural forests. The soil pH of 'the Ecological Forest' was 7.45, which was greater than that of the natural forests. There were some changes in plant composition and amounts 2 years after the construction : the number of conifers was reduced from 383 to 338 ; the number of deciduous trees was reduced from 4717 to 1158. It was because of the young trees dead in the sub-tree layer. The herbaceous species planted were 14 families, 31 species, which increased to 37 families, 93 species after 2 years. In case of horizontal structure of vegetation, trees and shrubs were distributed evenly in the natural forests, whereas 'the Ecological Forest' showed uneven distribution with higher total density. In case of vertical structure of vegetation, the natural forests had distinctive layers with dominant species distributed in each layers. In 'the Ecological Forest', however, dominant species were only in tree layer. The natural forests had greater average tree height, tree density, however, and basal area than 'the Ecological Forest'. The results showed that there were some differences in the structure between 'the Ecological Forest' and natural forests. The management plan should be applied in order that the natural condition be restored in 'the Ecological Forest' by competition between plant species and natural processes.

  • PDF

Analysis of Electroencephalogram and Electrocardiogram Changes in Adults in National Healing Forests Environment

  • Hong, Jae-Yoon;Lee, Jeong-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.575-589
    • /
    • 2018
  • This study analyzed the changes in Electroencephalogram(EEG) and Electrocardiogram(ECG) depending on the healing environment in order to find a way to improve the forest healing program based on the healing environment in response to the demand for qualitative improvement of the program since the program is a charged service. This study selected eight sites running forest healing programs at four national healing forests (i.e., Saneum, Cheongtaesan, Daegwanryeng, and Jangseong) - two routes per national healing forest - considering forest environments. This study chose NUMBER standard sampling plots ($20{\times}20m$) and measured three atmospheric environment items, seven physical environment items, two soil environment items, and eight vegetation environment items including forest sound and anion at each plot to evaluate physiological changes in it. EEG and ECG, which have been widely used in forest healing evaluation, were utilized as criteria. Seventy three subjects were selected with taking the age, drug, caffeine, smoking, and the time of last meal into consideration. As a result, EEG changes were correlated with three atmospheric environment items, six physical environment items, one soil environment item, and two vegetation environment items. ECG changes were significantly correlated with two atmospheric environment items, six physical environment items, two soil environment items, and two vegetation environment items (p<.05). It is expected that 11 environmental factors such as temperature, density, and altitude affecting EEG (e.g., alpha balance and gamma balance) and ECG (e.g., HRV mean) could be used as effective tools in developing more differentiated programs for improving healing effects.