• Title/Summary/Keyword: Forest Change

Search Result 2,111, Processing Time 0.031 seconds

Analysis of Chemical Compositions and Energy Contents of Different Parts of Yellow Poplar for Development of Bioenergy Technology

  • Myeong, Soo-Jeong;Han, Sim-Hee;Shin, Soo-Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.706-710
    • /
    • 2010
  • Understanding of chemical composition and energy contents in tree is important to develope strategies of renewable energy policy to cope with climate change. Residual biomass as renewable energy source was evaluated and focused on the bark-containing branches. Chemical analysis studies were conducted for different part of yellow poplar (Liriodendron tulipifera), which were partitioned to inner bark, outer bark, small branches, medium branches, big branches and trunk. The variations in hydrophobic extractives, hydrophilic extractives, lignin, carbohydrate compositions, energy contents (higher heating value) and the ash content were determined. The inner and outer bark had higher ash content, hydrophobic and hydrophilic extractives content, and higher energy content than those of tree trunk. Polysaccharides content in inner and outer bark was quite lower than those of stem or branches. Based on the energy content of residual biomass, replacement of fossil fuel and greenhouse gas emission abatement were calculated.

Local Climate Mediates Spatial and Temporal Variation in Carabid Beetle Communities on Hyangnobong, Korea

  • Park, Yong Hwan;Jang, Tae Woong;Jeong, Jong Cheol;Chae, Hee Mun;Kim, Jong Kuk
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.3
    • /
    • pp.161-171
    • /
    • 2017
  • Global environmental changes have the capacity to make dramatic alterations to floral and faunal composition, and elucidation of the mechanism is important for predicting its outcomes. Studies on global climate change have traditionally focused on statistical summaries within relatively wide scales of spatial and temporal changes, and less attention has been paid to variability in microclimates across spatial and temporal scales. Microclimate is a suite of climatic conditions measured in local areas near the earth's surface. Environmental variables in microclimatic scale can be critical for the ecology of organisms inhabiting there. Here we examine the effect of spatial and temporal changes in microclimates on those of carabid beetle communities in Hyangnobong, Korea. We found that climatic variables and the patterns of annual changes in carabid beetle communities differed among sites even within the single mountain system. Our results indicate the importance of temporal survey of communities at local scales, which is expected to reveal an additional fraction of variation in communities and underlying processes that has been overlooked in studies of global community patterns and changes.

Characteristics of Spatiotemporal Patterns in Benthic Macroinvertebrate Communities in Two Adjacent Headwater Streams (두 인접한 산림 하천에서 저서성 대형무척추동물 군집의 시공간적 특성 분석)

  • Lee, Da-Yeong;Bae, Mi-Jung;Kwon, Yong-Su;Park, Chan-Woo;Yang, Hee Moon;Shin, Yujin;Kwon, Tae-Sung;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.192-203
    • /
    • 2018
  • Headwater streams provide various microhabitats, resulting in high diversity of macroinvertebrate community. In this study, we compared the differences of communities between two adjacent headwater streams (Jangjeon stream (GRJ; GRJ1-GRJ5) and Haanmi stream (GRH; GRH1-GRH3)) in Jungwang and Gariwang mountains, Gangwon-do and evaluated the effects of habitat condition to the macroinvertebrates community composition. In order to characterize the macroinvertebrate communities and extract influential environmental factors, we applied to Cluster analysis (CA), Indicator species analysis and Non-metric multidimensional scaling (NMDS). Total 33,613 individuals in 3 phyla, 5 classes, 13 orders, 51 families, and 114 taxa (genera or species) were collected. Gammarus sp. was dominant at the upper stream of GRJ, whereas Chironomidae spp. was abundant at GRH and the downstream of GRJ. The CA classified samples into six clusters (1-6) reflecting spatial and temporal variation of benthic macroinvertebrate communities. Benthic macroinvertebrate community composition was significantly different between two adjacent streams. Sweltsa sp. 1, Psilotreta kisoensis, Rhyacophila shikotsuensis and Serratella setigera were identified as representative indicator species for clusters 1, 2, 3 and 5, respectively. Similar to CA results, NMDS revealed the spatial and temporal differences of benthic macroinvertebrate communities, indicating the difference of community composition as well as microhabitat condition. Forest composition, proportion of boulders (>256 mm), and water velocity were main factors affecting the macroinvertebrate community composition.

Detection of Forest Ecosystem Disturbance Using Satellite Images and ISODATA (위성영상과 자기조직화 분류기법을 이용한 산림생태계교란 탐지: 우박 피해지와 매미나방 피해지의 사례연구)

  • Kim, Daesun;Kim, Eun-Sook;Lim, Jong-Hwan;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.835-846
    • /
    • 2020
  • Recent severe climate changes and extreme weather events have caused the uncommon types of forest ecosystem disturbances such as hails and gypsy moths. This paper describes the analysis of the forest ecosystem disturbances using ISODATA (Iterative Self-organizing Data Analysis Technique Algorithm) with the RapidEye and Sentinel-2 images, regarding the cases of the hail damages in Hwasun in 2017 and the gypsy moth damages in the Chiak Mountain in 2020. In the case of hail damages, the comparison of the June image of this study and the July field survey of the previous study showed that the damage severity increased from June to July as the drought overlapped after the trees were injured by the hails. In the case of gypsy moths, significant leaf damages were found from the image of June, and the damages were mainly distributed at the low-altitude slope near Wonju City. We made sure that satellite remote sensing is a very effective method to detect various and unusual forest ecosystem disturbances caused by climate change. Also, it is expected that the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024 can be actively utilized to monitor such forest ecosystem disturbances.

Influence of Land Use Change in the Forest Catchment on Sediment Accumulation at the Outlets of Rivers: Results of a Study in Kushiro Mire, Northern Japan (산림유역 개발이 하천 출구의 토사 퇴적에 미치는 영향: 일본 쿠시로습지의 연구결과)

  • Ahn, Young Sang;Nakamura, Futoshi
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.669-675
    • /
    • 2009
  • The purpose of this study was to examine the influence of land use change in the forest catchment on sedimentation rate at the outlets of rivers in Kushiro Mire that have been impacted by forest clearing, agricultural activity and river regulation. We analysed Caesium-137(Cs-137) concentration in sediment cores, and we estimated sedimentation rates and Cs-137 inventories over the last 50 years. Cs-137 from atomic bomb testing first entered the environment in 1954 which provides easily identifiable chronological markers in the sediment. Because Cs-137 is strongly absorbed into sediment particles, its redistribution occurs in association with sedimentary particles. Since the 1950s, the forest catchment areas draining into the mire have been developed intensively from forest areas to agricultural lands. The sediment accumulations at the outlets of rivers after 1954 ranged from 36 to 148 cm. The Cs-137 inventory is significantly greater than the reference sites which reflected natural accumulation conditions because sediment containing Cs-137 was carried from catchments into the outlets of the rivers. In addition, the Cs-137 inventory was correlated with the sedimentation rate. However, the Cs-137 inventories in Kuchoro and Kushiro river profiles were slowly increased with the sedimentation rates. This is because the sediment originating from scoured areas such as streambeds and banks contains a low level of Cs-137 concentration.

Analysis of Spatial Information Characteristics for Establishing Land Use, Land-Use Change and Forestry Matrix (Land Use, Land-Use Change and Forestry 매트릭스 작성을 위한 공간정보 특성 고찰)

  • HWANG, Jin-Hoo;JANG, Rae-Ik;JEON, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.44-55
    • /
    • 2018
  • The importance of establishing a greenhouse gas inventory is emerging for policymaking and its implementation to cope with climate change. Thus, it is needed to establish Approach 3 level Land Use, Land-Use Change and Forestry (LULUCF) matrix that is spatially explicit regarding land use classifications and changes. In this study, four types of spatial information suitable for establishing the LULUCF matrix were analyzed - Cadastral Map, Land Cover Map, Forest Map, and Biotope Map. This research analyzed the classification properties of each type of spatial information and compared the quantitative and qualitative characteristics of the maps in Boryeong city. Drawn from the conclusions of the quantitative comparison, the forest area showed the maximum difference of 50.42% ($303.79km^2$) in the forest map and 46.09%($276.65km^2$) in the cadastral map. The qualitative comparison drew five qualitative characteristics: data construction scope difference, data construction purpose difference, classification standard difference, and classification item difference. As a result of the study, it was evident that the biotope map was the most appropriate spatial information for the establishment of the LULUCF matrix. In addition, if the LULUCF matrix is made by integrating the biotope, the forest map, and the land cover map, the limitations of each spatial information would be improved. The accuracy of the LULUCF matrix is expected to be improved when the map of the level-3 land cover map and the biotope map of 1:5,000 covering the whole country are completed.

Development of Evaluation Criteria for Forest Education Using the CIPP Model

  • Kim, Soyeon;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.163-172
    • /
    • 2020
  • The objective of this study was to develop evaluation criteria for forest education using the Context, Input, Process, and Product (CIPP) model. To this end, we designed a survey based on expert advice and content analysis of previous studies on the CIPP model and forest education. The survey was conducted on 393 forest education specialists, and Cronbach's α coefficient was set as 0.6 or higher to verify reliability and validity, and to determine reliability by factor. Eventually, 52 out of 57 evaluation items were extracted, and the evaluation indexes were selected through factor analysis as follows: four evaluation indexes for the context dimension, namely "Clarity of goal setting," "Developing conditions for education," "Meeting of requirements," and "Institutional drive"; three evaluation indexes for the input dimension, namely "Acquisition of education infrastructure," "Establishment of operational support," and "Adequacy of assigned manpower"; four evaluation indexes for the process dimension, which were "Adequacy of budget allocation," "Expertise of forest education instructors," "Diversity of programs," and "Public-private academic partnership"; and five evaluation indexes for the product dimension, namely "Effectiveness of perception change," "Influence over the society," "Continuity of improvement in evaluation," "Continuity of education," and "Verification of the effects of education."

Differences in Bird Communities Between Before and After Forest Fire in Tropical Dry Dipterocarp Forest of the Northeastern Cambodia

  • Rhim, Shin-Jae;Son, Seung Hun;Lee, Eun Jae;Lee, Woo-Shin;Pech, Bunnat;Kry, Masphal
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.563-567
    • /
    • 2009
  • This study was conducted to clarify the characteristics of bird communities between before and after forest fire in tropical deciduous Dipterocarp forest of Mondulkiri protected forest of the northeastern Cambodia from January to April 2009. The DBH distribution of trees were different in each DBH class. Most of the trees (> 80%) were belong to < 30 cm DBH. After the forest fire, coverage of understory layers were dramatically decreased by the fire. Total 64 species of birds were recorded, and 64 and 46 species of birds were observed before and after the fire, respectively. Observed number of individuals of bee-eaters, treepies, kingfishers, lapwings, herons, junglefowl, peafowl, prinias and warblers were decreased after the fire. The decrease of those species would be related with the change of habitat condition, such as decrease of water amount and understory coverage. For the management and conservation of junglefowls, peafowls, prinias and warblers, understory vegetation should be maintained in Mondulkiri protected forest, northeastern Cambodia.