The objective of the study is 10 know the relation of landslide occurrence with using TPI (Topographic Position Index) in the Pyungchang County. Total 659 landslide scars were detected from aerial photographs. To analyze TPI, 100m SN (Small-Neighborhood) TPI map, 500m LN (Large-Neighborhood) TPI map, and slope map were generated from the DEM (Digital Elevation Model) data which are made from 1 : 5,000 digital topographic map. 10 classes clustered by regular condition after overlapping each TPI maps and slope map. Through this process, we could make landform classification map. Because it is only to classify landform, 7 classes were finally regrouped by the slope angle information of landslide occurrence detected from aerial photography analysis. The accuracy of reclassified map is about 46%.
All around tile world there has been great human and economical damage continuously by disasters like the earthquakes and storms(Tsunami) in eastern asia which recently occurred, and like the New Orleams hurricane in USA. The situation is our countries damage from natural disasters due to heavy snow, storms, forest fires have been increasing In this research we obtained GSIS data of the 05' Yang-yang forest fire disaster area using multi-sensors like airborne laser data, GPS/INS, aerial photograph surveying. In result we produced digital topographical maps, digital elevation models, digital external models, digital images, infrared images. By, analyzing and comparing with past aerial photography we obtained the exact damage area, amount of damage, estimated tile areas where a landslide might occur, and we analyzed vegetations amount of damage and possibility of recovery.
본 연구의 목적은 2006년 태풍 에위니아, 빌리스, 개미와 집중호우로 인해 많은 산사태가 발생한 진부면 지역을 대상으로 항공사진을 이용한 산사태 탐지 및 인공신경망과 GIS를 이용한 산사태 취약성을 분석하는데 있다. 산사태 위치는 산사태 발생 전후의 항공사진을 판독 후 현장에서 확인하였다. 취약성 분석을 위해 지형, 지질, 토양, 임상, 선구조, 토지이용도 등의 자료는 공간 데이터베이스로 구축하였다. 산사태와 관련 요인들간의 상대적 가중치는 인공신경망의 역전파 알고리즘을 이용하여 결정하였다. 그 결과 경사방향과 경사는 다른 요인들 보다 1.2~1.5배 높게 나타났다. 이 가중치를 이용하여 취약성도를 작성 후 분석에 사용하지 않은 산사태 위치와 비교하여 검증하였다. 그 결과 예측 정확도는 81.44%로 나타났다.
UAVs are unmanned, autonomous or remotely piloted aircraft. As UAVs become smaller, lighter and more economical, their applications continue to expand. Researches on UAVs in the field of remote sensing show development methods and purposes similar to those on satellite images, and they are widely used in studies such as 3D image composition and monitoring. In the field of environmental impact assessment(EIA), satellite information and data are mainly used. However, only low-resolution images covering long distances and large-scale data allowing for rough examination are being provided, so their uses are seriously limited. Therefore, in this paper, we construct spatial information of forest area by using unmanned aerial vehicle and seek efficient utilization and policy improvement in the field of environmental impact assessment. As a result, high-resolution images and data from UAVs can be used to identify the location status of SEIA, EIA, and small scale EIA project plans and to evaluate detailed environmental impact analysis. In addition, when provided together with infographics about Post-environmental impact investigation, it was confirmed that the possibility of periodic spatial information construction and evaluation can be used throughout the entire project contents and project post-process.In order to provide sophisticated infographics for the EIA, drone photography and GCP surveying methods were derived.The results of this study will be used as a basis for improving high-resolution monitoring and environmental impact assessment in the forest sector.
In the post-Cold War era, acquisition technique of high-resolution satellite imagery (HRSI) has begun to commercialize. IKONOS-2 satellite imaging data is supplied for the first time in the 21st century. Many researchers testified mapping possibility of the HRSI data instead of aerial photography. It is easy to renew and automate a topographical map because HRSI not only can be more taken widely and periodically than aerial photography, but also can be directly supplied as digital image. In this study matching size of IKONOS Geo-level stereo image is presented lot production of digital elevation model (DEM). We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters (EOPs) to minimize search area, the matching is tarried out based on this line. The experiment on matching size is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, window size for the highest correlation coefficient is selected as propel size for matching. As the results of experiment, the proper size was selected as $123{\times}123$ pixels window, $13{\times}13$ pixels window, $129{\times}129$ pixels window and $81{\times}81$ pixels window in the water area, urban land, forest land and agricultural land, respectively. Of course, determination of the matching size by the correlation coefficient may be not absolute appraisal method. Optimum matching size using the geometric accuracy therefore, will be presented by the further work.
본 연구의 주요 특징은 무인항공기(드론)등에서 취득되는 항공사진과 영상을 클라우드 서버에 전송하여 자동으로 정사영상을 합성하고 영상 촬영의 목적에 적합한 분석알고리즘을 적용하는 것이다. 개발된 무인항공 촬영영상 분석은 녹조, 산불감시, 작물재배 상태 등 다양한 분야에 활용이 가능한 영상분석 프로세스이다.
신기후체제에 대응하여 정확한 탄소흡수 및 배출량을 산정하기 위해 토지이용 범주별 통계량 산출은 활동자료로서 매우 중요한 자료이다. 본 연구는 효과적인 토지이용 범주별 판독을 위하여 산림항공사진(이하 FAP)에 딥러닝모델을 적용하여 토지이용 범주별 자동화 판독 분류를 한 후 샘플링기법을 통해 국가단위 통계량을 산출하였다. 딥러닝모델에 적용한 데이터세트(이하, DS)는 국가산림자원조사 고정표본점 위치 기반 FAP의 이미지를 추출하여 훈련데이터세트(이하, 훈련DS)와 시험데이터세트(이하, 시험 DS)로 구분하였다. 훈련 DS는 토지이용 범주별 정의에 따라 이미지별 레이블을 부여하였으며, 딥러닝모델을 학습하고 검증하였다. 검증 시 모델의 학습정확도는 학습 횟수 1500회에서 정확도가 약 89%로 가장 높았다. 학습된 딥러닝모델을 시험DS에 적용한 결과, 이미지 레이블의 판독 분류정확도는 약 90%로 높았다. 샘플링기법을 통해 범주별 분류 결과에 대해 면적을 추정하여 국가통계와 비교한 결과 정합성 또한 높아 향후 LULUCF(Land Use, Land Use Change, Forestry)분야 국가 온실가스 인벤토리 보고서의 활동자료로 활용하기에 충분하다고 판단된다.
산림의 효율적인 관리를 위해 최근 원격탐사 기법을 이용하여 산림에 관련된 정보를 추출하려는 노력들이 활발히 이루어지고 있다. 하지만 단일 원격탐사 데이터를 이용하는 경우 수목 인식의 정확도 및 추출되는 정보의 양적인 면에서 많은 한계를 가진다. 본 연구는 최근의 수목모델링을 위한 핵심기술들을 컬러 항공사진과 LiDAR 데이터에 적용하여 국내 환경에서의 수목 모델링을 수행하고, 그 결과를 평가하는데 그 목적을 두고 있다. 대전광역시 내에 존재하는 소규모 산림 지역 중 침엽수만으로 이루어진 단순림을 대상 지역으로 하였다. 컬러항공사진과 LiDAR 데이터를 이용하여 추정된 개체수의 정확도 평가 결과 $R^2$값이 0.77로 나타났다. 수고의 경우 집단 정확도 평가 결과 최근 변화가 일어나지 않은 지역은 측정값과 추정값의 차이가 없는 것으로 나타났고, 개별 정확도 평가의 경우 $R^2$값이 0.83으로 높은 상관도를 보였다.
본 연구는 세종특별자치시 소나무재선충병(PWN) 피해지의 선단지에 대해서 무인항공기를 이용하여 효율적인 예찰 및 방제사업 지원을 실시하기 위해 수행되었다. 선단지를 중심으로 2016년 2월 15일부터 약 2주간 6개 구역 총 2,284 ha의 면적에 대해 무인항공 촬영을 실시하여 GSD (Ground Sample Distance) 12 cm의 고품질 정사영상 6매를 제작하였다. 정사영상을 바탕으로 1차 피해 의심목 분류를 실시한 결과 총 423본이 분류되었다. 그러나 촬영시기의 계절적 특성, 임상의 다양성 등의 문제로 인해 적중률이 낮아짐에 따라 1차 분류 결과와 스냅사진, 비행정보 등을 활용하여 2차 재분류를 실시하였으며, 이를 통해 피해 의심목 423본 중 231본을 추출하였다. 추출된 231본에 대해 대상지별 주제도를 제작하고 GNSS 등을 이용하여 현장조사를 실시하였으며, 그 결과 총 23본의 피해 의심목을 추출하였다. 현장조사를 통해 추출된 23본에 대해 시료를 채취하여 관련기관에 검증을 의뢰한 결과 23본 모두 소나무재선충병에 감염된 것으로 나타났다. 소나무재선충병 피해목의 분포 특성을 분석한 결과 활엽수림 14본, 침엽수림 4본, 소나무림 3본, 리기다소나무림 2본 등 다양한 임상에서 피해목이 검출된 것으로 나타났다. 무인항공기를 활용하여 항공촬영에서부터 현장조사까지의 과정에 대해 효율성 분석을 실시한 결과 2.3인의 인력으로 6일에 걸쳐 수행한 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.