DOI QR코드

DOI QR Code

Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks

항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석

  • Oh, Hyun-Joo (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 오현주 (한국지질자원연구원 지질정보센터)
  • Published : 2010.02.28

Abstract

The aim of this study is to detect landslide using digital aerial photography and apply the landslide to landslide susceptibility mapping by artificial neural network (ANN) and geographic information system (GIS) at Jinbu area where many landslides have occurred in 2006 by typhoon Ewiniar, Bilis and Kaemi. Landslide locations were identified by visual interpretation of aerial photography taken before and after landslide occurrence, and checked in field. For landslide susceptibility mapping, maps of the topography, geology, soil, forest, lineament, and landuse were constructed from the spatial data sets. Using the factors and landslide location and artificial neural network, the relative weight for the each factors was determinated by back-propagation algorithm. As the result, the aspect and slope factor showed higher weight in 1.2-1.5 times than other factors. Then, landslide susceptibility map was drawn using the weights and finally, the map was validated by comparing with landslide locations that were not used directly in the analysis. As the validation result, the prediction accuracy showed 81.44%.

본 연구의 목적은 2006년 태풍 에위니아, 빌리스, 개미와 집중호우로 인해 많은 산사태가 발생한 진부면 지역을 대상으로 항공사진을 이용한 산사태 탐지 및 인공신경망과 GIS를 이용한 산사태 취약성을 분석하는데 있다. 산사태 위치는 산사태 발생 전후의 항공사진을 판독 후 현장에서 확인하였다. 취약성 분석을 위해 지형, 지질, 토양, 임상, 선구조, 토지이용도 등의 자료는 공간 데이터베이스로 구축하였다. 산사태와 관련 요인들간의 상대적 가중치는 인공신경망의 역전파 알고리즘을 이용하여 결정하였다. 그 결과 경사방향과 경사는 다른 요인들 보다 1.2~1.5배 높게 나타났다. 이 가중치를 이용하여 취약성도를 작성 후 분석에 사용하지 않은 산사태 위치와 비교하여 검증하였다. 그 결과 예측 정확도는 81.44%로 나타났다.

Keywords

References

  1. 김철민, 2008. 산림자원정보 인벤토리 구축과 활용. 농업환경자원 인벤토리 구축과 활용 전략 국제 워크숍, 농촌진흥청, 6월 26일, 320 p.
  2. 워터저널, 2007. 물로 인한 재해를 예방하자. 6월호.
  3. 태백산지구지하자원조사단, 1962. 태백산 지구 지질도(1:50,000), 하진부 도폭, 대한지질학회.
  4. Alman, D. H. and N. Liao, 2001. Overtraining in Back-Propagation Neural Networks: A CRT Color Calibration Example, COLOR research and application, 27: 122-125.
  5. Beven, K. J. and M. J. Kirkby, 1979. A physically based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, 24: 43-69. https://doi.org/10.1080/02626667909491834
  6. Carrara, A., M. Cardinali, R. Detti, F. Guzzetti, V. Pasqui, and P. Reichenbach, 1991. GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms 16(5): 427-445. https://doi.org/10.1002/esp.3290160505
  7. Hines, J. W., 1997. Fuzzy and Neural Approaches in Engineering, John Wiley and Sons, New York, pp. 209.
  8. Johnes, D. K., D. Brunsden, and A. S. Goudie, 1983. A preliminarly geomorphological assessment of part of the Karakoram highway, The Q. J. of Engineering Geology, 16: 331-355. https://doi.org/10.1144/GSL.QJEG.1983.016.04.10
  9. Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data, International Journal of Remote Sensing, 26: 1477-1491. https://doi.org/10.1080/01431160412331331012
  10. Lee, S., 2007a. Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea, International Journal of Remote Sensing, 28: 4763-4783. https://doi.org/10.1080/01431160701264227
  11. Lee, S., 2007b. Application and verification of fuzzy algebraic operators to landslide susceptibility mapping, Environmental Geology, 52: 615-623. https://doi.org/10.1007/s00254-006-0491-y
  12. Lee, S., J. Choi, and K. Min, 2002. Landslide susceptibility analysis and verification using the Bayesian probability model, Environmental Geology 43(1-2): 120-131. https://doi.org/10.1007/s00254-002-0616-x
  13. Lee, S., J. W. Choi, and I. Woo, 2004. The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea, Geosciences Journal, 8: 51-60. https://doi.org/10.1007/BF02910278
  14. Lee, S., J. H. Ryu, K. Min, and J. S. Won, 2003. Landslide susceptibility analysis using GIS and artificial neural network, Earth Surface Processes and Landforms, 28(12): 1361-1376. https://doi.org/10.1002/esp.593
  15. Lee, S., J. H. Ryu, J. S. Won, and H. J. Park, 2004a. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network, Engineering Geology, 71(3-4): 289-302. https://doi.org/10.1016/S0013-7952(03)00142-X
  16. Lee, S., Ryu, J. H., Lee, M. J., and J. S. Won, 2006. The application of artificial Neural networks to landslide susceptibility mapping at Janghung, Korea, Mathematical Geology, 38: 199-220. https://doi.org/10.1007/s11004-005-9012-x
  17. Lee, S., J. H. Ryu, and I. S. Kim, 2007. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea, Landslides, 4: 327-338, https://doi.org/10.1007/s10346-007-0088-x
  18. Lessing, P. and R. B. Erwin, 1977. Landslides inWest Virginia. In: Coates, D.R. (Ed.), Landslides. Geological Society of America, Boulder, CO, Reviews in Engineering Geology, 3: 245?254.
  19. Moore, I. D., R. B. Grayson, and A. R. Ladson, 1993. Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. In: Beven KJ, Moore ID (eds) Terrain analysis and distributed modeling in hydrology. Advances in hydrological processes. Wiley, Chichester.
  20. Ohlmacher, G. C., 2007. Plan curvature and landslide probability in regions dominated by earth flows and earth slides, Engineering Geology 91: 117-134. https://doi.org/10.1016/j.enggeo.2007.01.005
  21. Paola, J. D. and R. A. Schowengerdt, 1995. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery, International Journal of Remote Sensing, 16: 3033-3058. https://doi.org/10.1080/01431169508954607
  22. Schneider, S. and M. Gruber, 2008. Radiometric quality of Ultracam-X images., In: Proceedings of ISPRS Congress, Beijing, p. 539.
  23. Van Westen, C. J. and M. T. J. Terlien, 1996. An approach towards deterministic lan dslide hazard analysis in GIS: A case study from Manizales (Colombia), Earth Surface Processes and Landforms 21(9): 853-868. https://doi.org/10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C
  24. Wilson, D. J. and J. C. Gallant, 2000. Digital terrain analysis. In: Wilson DJ, Gallant JC (eds.) Terrain analysis: principles and applications, Wiley, New York, 1-27.