• Title/Summary/Keyword: Foreground detection

Search Result 118, Processing Time 0.033 seconds

AUTOMATIC MOTION DETECTION USING FALSE BACKGROUND ELIMINATION

  • Seo, Jin Keun;Lee, Sukho
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This work deals with automatic motion detection for with surveillance tracking that aims to provide high-lighting movable objects which is discriminated from moving backgrounds such as moving trees, etc. For this aim, we perform a false background region detection together with an initial foreground detection. The false background detection detects the moving backgrounds, which become eliminated from the initial foreground detection. This false background detection is done by performing the bimodal segmentation on a deformed image, which is constructed using the information of the dominant colors in the background.

Detecting Foreground Objects Under Sudden Illumination Change Using Double Background Models (이중 배경 모델을 이용한 급격한 조명 변화에서의 전경 객체 검출)

  • Saeed, Mahmoudpour;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.268-271
    • /
    • 2016
  • In video sequences, foreground object detection being composed of a background model and a background subtraction is an important part of diverse computer vision applications. However, object detection might fail in sudden illumination changes. In this letter, an illumination-robust background detection is proposed to address this problem. The method can provide quick adaption to current illumination condition using two background models with different adaption rates. Since the proposed method is a non-parametric approach, experimental results show that the proposed algorithm outperforms several state-of-art non-parametric approaches and provides low computational cost.

Salient Object Detection via Multiple Random Walks

  • Zhai, Jiyou;Zhou, Jingbo;Ren, Yongfeng;Wang, Zhijian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1712-1731
    • /
    • 2016
  • In this paper, we propose a novel saliency detection framework via multiple random walks (MRW) which simulate multiple agents on a graph simultaneously. In the MRW system, two agents, which represent the seeds of background and foreground, traverse the graph according to a transition matrix, and interact with each other to achieve a state of equilibrium. The proposed algorithm is divided into three steps. First, an initial segmentation is performed to partition an input image into homogeneous regions (i.e., superpixels) for saliency computation. Based on the regions of image, we construct a graph that the nodes correspond to the superpixels in the image, and the edges between neighboring nodes represent the similarities of the corresponding superpixels. Second, to generate the seeds of background, we first filter out one of the four boundaries that most unlikely belong to the background. The superpixels on each of the three remaining sides of the image will be labeled as the seeds of background. To generate the seeds of foreground, we utilize the center prior that foreground objects tend to appear near the image center. In last step, the seeds of foreground and background are treated as two different agents in multiple random walkers to complete the process of salient object detection. Experimental results on three benchmark databases demonstrate the proposed method performs well when it against the state-of-the-art methods in terms of accuracy and robustness.

Saliency Detection based on Global Color Distribution and Active Contour Analysis

  • Hu, Zhengping;Zhang, Zhenbin;Sun, Zhe;Zhao, Shuhuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5507-5528
    • /
    • 2016
  • In computer vision, salient object is important to extract the useful information of foreground. With active contour analysis acting as the core in this paper, we propose a bottom-up saliency detection algorithm combining with the Bayesian model and the global color distribution. Under the supports of active contour model, a more accurate foreground can be obtained as a foundation for the Bayesian model and the global color distribution. Furthermore, we establish a contour-based selection mechanism to optimize the global-color distribution, which is an effective revising approach for the Bayesian model as well. To obtain an excellent object contour, we firstly intensify the object region in the source gray-scale image by a seed-based method. The final saliency map can be detected after weighting the color distribution to the Bayesian saliency map, after both of the two components are available. The contribution of this paper is that, comparing the Harris-based convex hull algorithm, the active contour can extract a more accurate and non-convex foreground. Moreover, the global color distribution can solve the saliency-scattered drawback of Bayesian model, by the mutual complementation. According to the detected results, the final saliency maps generated with considering the global color distribution and active contour are much-improved.

Probabilistic Background Subtraction in a Video-based Recognition System

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.782-804
    • /
    • 2011
  • In video-based recognition systems, stationary cameras are used to monitor an area of interest. These systems focus on a segmentation of the foreground in the video stream and the recognition of the events occurring in that area. The usual approach to discriminating the foreground from the video sequence is background subtraction. This paper presents a novel background subtraction method based on a probabilistic approach. We represent the posterior probability of the foreground based on the current image and all past images and derive an updated method. Furthermore, we present an efficient fusion method for the color and edge information in order to overcome the difficulties of existing background subtraction methods that use only color information. The suggested method is applied to synthetic data and real video streams, and its robust performance is demonstrated through experimentation.

Real-time Human Detection under Omni-dir ectional Camera based on CNN with Unified Detection and AGMM for Visual Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1345-1360
    • /
    • 2016
  • In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based object detection method boasts of very fast object detection, but with less accuracy. The proposed method adapts the unified detecting CNN of YOLO model so as to be intensified by the additional foreground contextual information obtained from pre-stage AGMM. Increased computational time incurred by additional AGMM processing is compensated by speed-up gain obtained from utilizing 2-D input data consisting of grey-level image data and foreground context information instead of 3-D color input data. Through various experiments, it is shown that the proposed method performs better with respect to accuracy and more robust to environment changes than YOLO model-based human detection method, but with the similar processing speeds to that of YOLO model-based one. Thus, it can be successfully employed for embedded surveillance application.

Improving Clustering-Based Background Modeling Techniques Using Markov Random Fields (클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안)

  • Hahn, Hee-Il;Park, Soo-Bin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.157-165
    • /
    • 2011
  • It is challenging to detect foreground objects when background includes an illumination variation, shadow or structural variation due to its motion. Basically pixel-based background models including codebook-based modeling suffer from statistical randomness of each pixel. This paper proposes an algorithm that incorporates Markov random field model into pixel-based background modeling to achieve more accurate foreground detection. Under the assumptions the distance between the pixel on the input imaging and the corresponding background model and the difference between the scene estimates of the spatio-temporally neighboring pixels are exponentially distributed, a recursive approach for estimating the MRF regularizing parameters is proposed. The proposed method alternates between estimating the parameters with the intermediate foreground detection and estimating the foreground detection with the estimated parameters, after computing it with random initial parameters. Extensive experiment is conducted with several videos recorded both indoors and outdoors to compare the proposed method with the standard codebook-based algorithm.

Realtime Smoke Detection using Hidden Markov Model and DWT (은닉마르코프모델과 DWT를 이용한 실시간 연기 검출)

  • Kim, Hyung-O
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • In this paper, We proposed a realtime smoke detection using hidden markov model and DWT. The smoke type is not clear. The color of the smoke, form, spread direction, etc., are characterized by varying the environment. Therefore, smoke detection using specific information has a high error rate detection. Dynamic Object Detection was used a robust foreground extraction method to environmental changes. Smoke recognition is used to integrate the color, shape, DWT energy information of the detected object. The proposed method is a real-time processing by having the average processing speed of 30fps. The average detection time is about 7 seconds, it is possible to detect early rapid.

A two-stage cascaded foreground seeds generation for parametric min-cuts

  • Li, Shao-Mei;Zhu, Jun-Guang;Gao, Chao;Li, Chun-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5563-5582
    • /
    • 2016
  • Parametric min-cuts is an object proposal algorithm, which can be used for accurate image segmentation. In parametric min-cuts, foreground seeds generation plays an important role since the number and quality of foreground seeds have great effect on its efficiency and accuracy. To improve the performance of parametric min-cuts, this paper proposes a new framework for foreground seeds generation. First, to increase the odds of finding objects, saliency detection at multiple scales is used to generate a large set of diverse candidate seeds. Second, to further select good-quality seeds, a two-stage cascaded ranking classifier is used to filter and rank the candidates based on their appearance features. Experimental results show that parametric min-cuts using our seeding strategy can obtain a relative small pool of proposals with high accuracy.

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.