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Abstract 
 

In this paper, we propose a novel saliency detection framework via multiple random walks 
(MRW) which simulate multiple agents on a graph simultaneously. In the MRW system, two 
agents, which represent the seeds of background and foreground, traverse the graph according 
to a transition matrix, and interact with each other to achieve a state of equilibrium. The 
proposed algorithm is divided into three steps. First, an initial segmentation is performed to 
partition an input image into homogeneous regions (i.e., superpixels) for saliency computation. 
Based on the regions of image, we construct a graph that the nodes correspond to the 
superpixels in the image, and the edges between neighboring nodes represent the similarities 
of the corresponding superpixels. Second, to generate the seeds of background, we first filter 
out one of the four boundaries that most unlikely belong to the background. The superpixels on 
each of the three remaining sides of the image will be labeled as the seeds of background. To 
generate the seeds of foreground, we utilize the center prior that foreground objects tend to 
appear near the image center. In last step, the seeds of foreground and background are treated 
as two different agents in multiple random walkers to complete the process of salient object 
detection. Experimental results on three benchmark databases demonstrate the proposed 
method performs well when it against the state-of-the-art methods in terms of accuracy and 
robustness. 
 
 
Keywords: Saliency Object Detection, Multiple Random Walks, Center Prior 

 
This work is sponsored by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China 
(Grant No. 14KJB520006), the CICAEET fund and the PAPD fund. 
 
http://dx.doi.org/10.3837/tiis.2016.04.014                                                                                                          ISSN : 1976-7277 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016                                     1713 

1. Introduction 

Saliency detection has attracted intensive attention and achieved considerable progress 
during the past two decades. Up to now, a great number of detectors based on computational 
intelligence have been proposed. Although significant progress has been made, it remains a 
challenging task to develop effective and efficient algorithms for salient object detection. 

Saliency models include two main research areas: visual attention which is extensively 
studied in neuroscience and cognitive modeling, and salient object detection which is of great 
interest in computer vision. Salient object detection methods can be categorized as bottom-up 
stimuli-driven [1-19] and top-down task-driven [20-30] approaches. Bottom-up methods are 
usually based on low-level visual information and are more effective in detecting fine details 
rather than global shape information. In contrast, top-down saliency models are able to detect 
objects of certain sizes and categories based on more representative features from training 
samples. However, the detection results from top-down methods tend to be coarse with fewer 
details. In terms of computational complexity, bottom-up methods are often more efficient 
than top-down approaches since they need training process which makes them time 
consuming.  

Saliency models based on bottom-up methods map natural images into saliency maps, in 
which each image element (e.g., pixel, superpixel and region) is assigned a saliency strength or 
probability. Early efforts aimed to predict the locations of human eye fixations and introduced 
the fundamental principles of saliency detection. A representative work by Itti et al. is 
presented in [4]. They proposed a biologically inspired visual attention model and built a 
system called neuromorphic vision C++ toolkit. Specifically, they proposed the using of a set 
of feature maps from three complementary channels as intensity, color, and orientation. The 
normalized feature maps from each channel were then linearly combined to generate the 
overall saliency map. Achanta et al. [5] proposed a frequency-tuned approach, which results in 
a saliency map from color differences of the entire image directly. In [6], Cheng et al. 
presented the histogram-based contrast (HC), which exploits the pixel-wise color separation to 
produce saliency maps, and the region-based contrast (RC), which is an improvement of HC 
that takes spatial distances into account at the cost of reduced computational efficiency. To 
overcome the limitations of color contrast, Fu et al. [7] illustrated the workflow of a combined 
color contrast and color distribution saliency detection algorithm, together with a refinement 
process to suppress noise and artifacts. 

Although most previous works mainly concentrated on contrast-based bottom-up saliency, 
it was believed that at early stage of free viewing, eye movements were mainly directed by 
bottom-up visual saliency and later on, by high-level factors (e.g., objects [22], actions [23], 
and events [26]). Thus it was inevitable to combine bottom-up saliency information and 
top-down factors to build a superior model for predicting eye fixations. Recently, much effort 
has been made to design discriminative features and saliency priors. Most methods essentially 
follow the region contrast framework, aiming to design features that better characterize the 
distinctiveness of an image region with respect to its surrounding area. In [27], three novel 
features were integrated with a conditional random field. A model based on low-rank matrix 
recovery was presented in [28] to integrate low-level visual features with higher-level priors. 
Saliency priors, such as the center prior [27] and the boundary prior [9, 11], were widely used 
to heuristically combine low-level cues and improve saliency estimation. These saliency 
priors were either directly combined with other saliency cues as weights [6, 29] or used as 
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features in learning based algorithms [9, 16, 30]. While these empirical priors can improve 
saliency results for many images, they may fail when a salient object is off-center or 
significantly overlaps with the image boundary.  

Graph-based approaches, which exploit saliency priors or center priors as saliency seeds or 
background seeds, have gained much popularity in bottom-up saliency detection and achieved 
state-of the-art performance. To conduct saliency propagations, an input image is represented 
by a graph over the segmented superpixels, in which the adjacent superpixels in the image are 
connected by weighted edges. The saliency values are then iteratively diffused along these 
edges from the labeled superpixels to their unlabeled neighbors. However, such propagations 
may incur errors if the unlabeled adjacent superpixels are inhomogeneous or very dissimilar to 
the labeled ones. For example, [31] formulated the saliency propagation process as random 
walks on the graph. And based on graph-based manifold ranking (MR), the work of Yang et al. 
[10] utilized the four boundaries of the input image as background prior to extract foreground 
queries for the final saliency map. All these methods generate similar propagation sequences 
which were heavily influenced by the superpixels’ spatial relationships. However, once 
encountering the inhomogeneous or incoherent adjacent superpixels, the propagation 
sequences were misleading and likely to lead to inaccurate detection results. The results in 
[10] demonstrated that the MR algorithm outperforms most of the state-of-the-art saliency 
detection methods and is more computationally efficient. However, there are flaws that hinder 
it from full performance. Firstly, the four boundaries used as background queries in MR may 
be implausible for the background saliency detection. In other words, one or more boundaries 
may be adjacent to the foreground object and undesirable results may emerge if we still use 
them as background queries. Zhu et al. [11] proposed a novel and reliable background measure, 
called boundary connectivity, to detect foreground maps in given image. Recently, much more 
graph-based saliency models which regard saliency detection as the label propagated on a 
single graph have been proposed [15-17]. All these methods generate similar propagation 
sequences which are heavily influenced by the super-pixels’ spatial relationships. However, 
once encountering the inhomogeneous or incoherent adjacent superpixels, the propagation 
sequences are misleading and likely to lead to inaccurate detection results. 

In this paper, we propose a novel saliency detection framework via multiple random 
walkers (MRW) to simulate multiple agents on a graph simultaneously. Those agents traverse 
the graph according to a transition matrix, but they also interact with one another to achieve a 
desired goal. The proposed framework is shown in Fig. 1. Our algorithm can be segmented 
into three steps. First, an initial segmentation, i.e., SLIC [32], is required to partition the image 
into homogeneous regions for measuring saliency. Based on the regions of image, we 
construct a graph that the superpixel corresponds to the node and the similarity between the 
neighbors corresponds to the edge. Second, to generate the seeds of background, we first filter 
out one of the four boundaries that most unlikely belong to the background. The superpixels on 
each of the three remaining sides of the image will be labeled as the seeds of background. To 
generate the seeds of foreground, we utilize the center prior that foreground objects tend to 
appear near the image center. In last step, the seeds of foreground and background are treated 
as two different agents in multiple random walkers to complete the process of salient object 
detection. With the random process continues, multiple agents repel the other and form their 
own dominant regions. 

The contributions of this paper are summarized as follows: 
(1) We propose a novel salient object detection algorithm which is based on multiple 

random walkers. Under multiple random walks framework, the seeds of background 
and foreground are considered as the agents to traverse the graph according to a 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016                                     1715 

transition matrix. As the process goes on, each walker repels the other walker, while 
forming a dominant region. The region formed by background seeds is considered as 
the background of the given image.  

(2) We design a method of background seeds selection for multiple random walkers in the 
proposed algorithm. Unlike MR [10] which uses a problematic boundary as the seeds of 
the background in saliency estimation, we optimize the boundary influences by locating 
and eliminating erroneous boundaries before the saliency detection. 

 

 

Fig. 1. The pipeline of the proposed algorithm 
 

The remainder of the paper is organized as follows: Section 2 reviews related work which is 
related to our approach. We demonstrate framework of our saliency detection method in detail 
in Section 3. Then, we demonstrate our experimental results based on four public image 
datasets and compare the results with other state-of-art saliency detection methods in Section 4. 
The final section concludes the paper by summarizing our findings. 

2. Related Work 
Random walk, a process in which a walker moves randomly from one node to another in a 
graph, can be used to analyze the underlying data structure of the graph. Previous works on 
detecting salient regions from images represented as random walk include [12] and [13]. Next, 
we describe the conventional random walk at first, which is a Markov process of a single 
random walker. 

Let >=< EVG , be an undirected, weighted graph. The node set V consists of data 
points Nixi ,,2,1, = . Edge ije in the edge set E connects ix and jx . Also, let NNRW ×∈ be a 

symmetric matrix, in which the ),( ji th element ijw is the weight of ije , representing the 

affinity between ix and jx . Typically, ijw is defined as 
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where d is a dissimilarity function and 2σ is a scale parameter. 
A random walker travels on the graph G . The transition probability ija that the walker 

moves from node j to node i is obtained by dividing ijw by the degree of node j , i.e., 

∑=
k kjijij wwa / . In other words, the transition matrix ][ ijaA = is computed by normalizing 

each column of the affinity matrixW . Let Tt
N

tt ppp ],,[ )()(
1

)(
= be a column vector, in 

which )(t
ip denotes the probability that the walker is found at node i at time instance t . We then 

have the temporal recursion 
 

)()1( tt App =+                                                          (2) 
 

If the graph has a finite number of nodes and is fully connected, A is irreducible and 
primitive [33]. Then, the walker has a unique stationary distributionπ , satisfying ππ A= , 
and )(lim t

t p→∞=p  regardless of an initial condition )0(p . The stationary distribution 
π conveys useful information about the underlying data structure of the graph, and it is thus 
exploited in vision applications [14, 34]. 

Previous works focus on single random walker to detect salient regions from images. In [12], 
Costa presents two models in which random walks on graphs enable the identification of 
salient regions by determining the frequency of visits to each node at equilibrium. While some 
results are presented on only two synthetic images, there is no evaluation of how the method 
will work on real images. A similar approach in [13] uses edge strengths to represent the 
dissimilarity between two nodes; the strength between two nodes decreases as the distance 
between them increases. Here, the most frequently visited node will be most dissimilar in a 
local context. A major problem when looking for local dissimilarities of features is that 
cluttered backgrounds will yield higher saliencies as such backgrounds possess high local 
contrasts. In the work of Gopalakrishnan et al. [14], the random walks model has been 
exploited in an automatic salient-region-extraction method to effectively detect the rough 
location of the most salient object in an image. The behavior of random walks on the two 
separate graphs is used to identify the most salient node of the image along with some 
background nodes. The final stage of seeded salient region identification uses information 
about the salient and the background nodes in an accurate extraction of the salient part in the 
image. To obtain the saliency seeds, they evaluated the ‘isolation’ of nodes in a global sense 
and identify nodes corresponding to ‘compact’ regions in a local sense. Since clutter 
background often exists in natural images, the dominant seeds located in background were 
detected as salient seeds, which affected the performance of their method in complex images. 
Our proposed work is different from them for two aspects. First, our framework is based on the 
multiple random walks, which take both background and foreground into consideration, 
diffuse the information of multiple agents on the same graph. Background and foreground can 
interact with each other until achieve a state of equilibrium. Second, the proposed algorithm 
exploit a robust method to obtain background seeds which can improve the performance when 
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process clutter background. 
Random walk with restart (RWR) [35] is a generalization of the random walk, in which the 

walker is compelled to return to specified nodes with a restart probability ε . The RWR 
recursion is 

 
rApp tt εε +−=+ )()1( )1(                                                 (3) 

 
where T

Nrrrr ],,,[ 21 = is the restart distribution with 1=∑i ir and 0≥ir . With probability 

ε−1 , the walker moves ordinarily as in (2). On the other hand, with probabilityε , the walker 
is forced to restart with the distribution r . When 1=ir and 0=ir for all ij ≠ , the stationary 
distribution of the RWR represents the affinity of each node to the specific node i . This 
property has been exploited in image segmentation [36] and data mining [35]. 

Based on the theory of random walk with restart (RWR), Kim et al. [37] proposed a 
graph-based multiscale saliency detector, which used a coarse scale saliency map to refine a 
fine scale map. The steady-state distribution obtained in a coarser scale image is used as a 
restarting vector for the random walk at the higher scale image. In [38], A saliency detection 
algorithm for video sequences based on the random walk with restart (RWR) adopt RWR to 
detect spatially and temporally salient regions which use the features of motion distinctiveness, 
temporal consistency, and abrupt change. The transition probability matrix for the walker uses 
the spatial features of intensity, color, and compactness. As mentioned before, these two 
methods are based on single random walker. Our proposed algorithm is also different from 
them that we average five dissimilarities of node features, including RGB and LAB superpixel 
means, boundary cues, bag-of-visual-words histograms of RGB and LAB colors to obtain the 
transition matrix. To achieve saliency detection by information propagation from background 
and foreground seeds, we employ double random walkers, called foreground walker and 
background walker to form the saliency map based on the transition matrix. 

3. Salient Object Detection by Multiple Random Walks 
This section introduces the notion of Multiple Random Walks (MRW). Then we describe how 
to select the seeds of background and eliminate erroneous boundaries. According to the 
characteristic of MRW, we define the salient region detection accordingly. 

3.1 Multiple Random Walks 
The conventional random walk in (2) or (3) describes the movements of a single agent. In 
contrast, we consider multiple agents who share the same graph and affect the movements of 
one another. 

Suppose there are K agents on a graph. Let )(t
kp denote the probability distribution of agent 

k at time t . Similar to (3), random movements of agent k are governed by 
 

KkrApp t
k

t
k

t
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=+−=+ εε                                (4) 
 
Thus, with probability ε−1 , agent k travels on the graph according to the transition matrix 

A , independently of the other agents. However, with probabilityε , agent k visits the nodes 



1718                                                             Zhai et al.: Salient Object Detection via Multiple Random Walks 

according to the time-varying restart distribution Tt
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We can make the agents interact with one another, by determining the restart distribution as 
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where the function kφ is referred to as the restart rule. It determines a probability distribution 

kφ from K
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In (5), δ is a constant within [0,1], called the cooling factor. In an extreme case of δ = 0, the 
restart distribution becomes time-invariant, and the MRW recursion of each agent in (4) is 
identical with the RWR recursion in (3). In the other extreme case of 1=δ , )( )()( t
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)(t
kr is a Cauchy sequence in terms of time t . Since a Cauchy sequence inℜ is convergent, the 

restart distribution )(t
kr converges to a fixed distribution )(∞

kr . Therefore, as t approaches 
infinity, the MRW recursion in (4) becomes the RWR recursion, and agent k has a stationary 
distribution eventually. Each agent in the MRW system in (4) and (5) has a stationary 
distribution [35], given by 

 
)(lim t

ktk p
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In our system, multiple walkers adapt their movements based on other walkers’ 

distributions. Then, we extract useful information from the stationary distributions of the 
multiple walkers. 

3.2. Repulsive Restart Rule 

By designing the restart rule kφ in (5) for saliency detection, we can simulate two agent 
(background and foreground, 2=k ) interactions to achieve a desired goal. For notational 
simplicity, let us omit the superscripts for time instances. In the MRW system 
 

T
kNkk xpxpp )](,),([ 1 ωω =                                          (8) 

 
where )( kixp ω is the probability that agent k is found at node i . According to the Bayes’ rule, 
the posterior probability is given by 
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which represents the probability that node i is occupied by agent k . The repulsive restart rule 
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sets the i th element of )(Ρkφ as 
 

))()(, ikkiik xpxp ωωαφ ⋅⋅=                                          (10) 

where α is a normalizing factor to make )(Ρkφ a probability distribution. Suppose that 

foreground agent is dominant at node i , i.e., it has a high posterior probability )( ik xp ω and a 

high likelihood )( kixp ω . Then, it restarts at that node with a high probability, and tends to 
become more dominant. This has the effect that a foreground agent at a node repels the 
background agent. The repulsive restart rule in (10) can be rewritten as 
 

kkk pQαφ =Ρ)(                                                       (11) 
 
where kQ is a diagonal matrix whose ),( ii th element is the posterior probability )( ik xp ω . 

For saliency detection, we perform the MRW simulation in (4) and (5), by employing the 
restart rule in (11), to obtain the stationary distribution kπ of each agent k . Then, node i is 
assigned a background or foreground label il based on the maximum a posteriori (MAP) 
criterion,  
 

)(maxarg ik
k

i xpl ω=                                                 (12) 

3.3 Background Seed Selection 
As stated in the introduction, it is possible for a boundary in the input image to be occupied by 
the foreground object. Using such a problematic boundary as queries in the background 
saliency estimation may lead to undesirable results [11]. We therefore optimize the boundary 
influences by locating and eliminating erroneous boundaries before the background saliency 
estimation.  

Given the conspicuous difference of color and contrast between the background and the 
salient object, the erroneous boundary tends to have distinctive color distribution compared to 
the remaining three. Hence, we treat the superpixel boundaries as connected regions, and 
calculate their normalized pixel-wise RGB histogram respectively,  
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where { }rightleftbottomtopb ,,,∈  indicates the four boundary locations; n is the total pixel 
number in the target region; 255,,0 =h is the intensity bin variable; qI is the intensity 

value of pixel q ; and ( )⋅δ is the unit impulse function. The red, green and blue channels are 
calculated separately using 256 bins. We then compute the Euclidean distance of any two of 
the four histograms,  
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The resulted 4×4 matrixϕ is then summed in column-wise, the maximum of which 
determines the boundary to be removed. E.g. if the second column sums to be the largest, the 
bottom boundary will be removed.  

3.4 Saliency Detection via MRW 
Given an input image, we first construct a graph >=< EVG , . The image is initially 
over-segmented into SLIC superpixels [32], each of which becomes a node inV . For the edge 
set E , we use the edge connection scheme in [10]. Specifically, each node is connected not 
only to its spatial neighbors but also to the neighbors of the neighbors, and all boundary nodes 
at the image border are connected to one another. 

For each edge ije , we determine the affinity weight ijw in (1), by employing the dissimilarity 
function 

 

∑=
l

jilji xxd
l

xxd ),(1),(                                              (15) 

 
We use five dissimilarities ld of node features, including RGB and LAB superpixel means, 

boundary cues, bag-of-visual-words histograms of RGB and LAB colors [39]. For the 
superpixel means of RGB and LAB, we average all feature values in a superpixel node and use 
the Euclidean distance for measuring the dissimilarity. For the ‘Boundary cue,’ we use the sum 
of the gradient magnitudes on the line connecting the centers of two superpixel nodes directly 
as the dissimilarity. For the ‘Bag of-visual-words’ histograms of RGB and LAB colors, we 
build codewords via the k means clustering and construct the codeword histogram for a 
superpixel node. In this case, we use the Chi-square distance for measuring the dissimilarity. 
We combine those dissimilarities through averaging them. By normalizing each column of the 
affinity matrix ][ ijwW = , we obtain the transition matrix A . 

To achieve saliency detection by information propagation from background and foreground 
seeds, we employ double random walkers, called foreground walker and background walker, 
whose probability distributions are denoted by fp and bp , respectively. These two walkers 
make interactions according to 
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with the repulsive restart rule. It is guaranteed that the probability distributions converge to 
stationary distributions fπ and bπ , respectively. To sum up, the saliency scores according to 
saliency and boundary priors can be written as:  

fpiS =)(                                                       (18) 
Algorithm 1 describes how to implement the proposed algorithm. The temporal saliency 

detection consists of three steps. The first step is to segement the image into superpixels and to 
construct the the graph. In this step, we determine the affinity weight ijw by employing five 
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dissimilarity functions and then the transition matrix A is determined accordingly. In second 
step, we compute the seeds of the background and foreground by locating and eliminating 
erroneous boundaries. In last step, the information of the background and the foreground 
diffuse in the graph repeatedly until the regions of the foreground stops decreasing. 

 
Algorithm 1. Salient object detection via MRW 
Input: Input image I , restart probability ε  
1. Segment image I  to superpixels 
2. Construct a graph >=< EVG , , determine the transition matrix A         

3. Calculate the seeds of background  bp  according to (13)and(14) 

4. Detemine the seeds of foreground fp  based on background seeds 
5. repeat 
6.                                   )()()1( )1( t

f
t

f
t

f rApp εε +−=+  

7.                                   )()()1( )1( t
b

t
b

t
b rApp εε +−=+  

8.  until the regions of foreground stops decreasing 
Output: Saliency map fpS =  
 

4. Experimental Results and Analysis 
In this section, we evaluate the performance of our proposed algorithm (SMRW for short) over 
several data sets that are widely used in previous works, e.g. [2, 6, 9]. Next, we describe the 
datasets shortly and report both quantitative and qualitative comparisons of our approach with 
state-of-the-art approaches in detail. To save the space, we compare our method with several 
prior ones, including SVO [40], PCA [41], RC [6] and DRFI [9], which are the top four models 
or their improvements in survey [2]. In addition, we also consider the methods which are based 
on the three-step procedure, such as DSR [42], LRMR [28], XIE [43] and MR [10], that is not 
covered in [2] and recently-developed methods, i.e., MS [44], LPS [45], Zhu [11] and BL [46]. 
In our experiments, we fix the restart probability ε  in (16) and (17) to 0.2 for all datasets. 

4.1 Datasets and Evaluation Measures 
The proposed method is evaluated on three publicly-available datasets with a ground truth in 
the forms of accurate human-marked labels for the salient regions. (1) MSRA [5] includes 
1000 images, originally containing labeled rectangles from nine users drawing a bounding box 
around what they consider the most salient object. There is a large variation among images 
including natural scenes, animals, indoor, out-door, etc. We use the salient object (contour) in 
[9] as binary masks. (2) SED [47] contains two subsets, the first of which is a single-object 
database (SED1) with 100 color images and only one salient object in each image. The second 
is a two-object database (SED2), which also has 100 color images with two salient objects in 
each image. Pixel-wise ground truth annotation for the salient objects in both SED1 and SED2 
are provided. (3) SOD [48] is a collection of salient object boundaries based on the Berkeley 
segmentation data set. Seven subjects are asked to choose the salient object(s) in 300 images. 
This data set contains many images with multiple objects making it challenging.  

We evaluate the performance using the measures used in [2], the PR (precision-recall) curve. 
Precision is the fraction of detected salient pixels belonging to the salient object in the ground 
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truth, and recall corresponds to the percentage of salient pixels correctly assigned. The PR 
curve is created by varying the saliency threshold that determines if a pixel is on the salient 
object. To obtain F-Measure, we follow [5, 6] to segment a saliency map by the threshold 
defined as follows: 
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where W and H are the width and height of the saliency map in pixels, respectively, 
and ),( yxS is the saliency value of the pixel at position ),( yx . If the saliency value of a 
superpixel is larger than threshold, it is considered as the part of salient object. In many 
applications, high precision and high recall are both required. We thus estimate the F-Measure 
[5] as: 
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where we set 3.0=β to emphasize the precision.  
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Fig. 2. Precision-recall curves of our method with different priors 

4.2 Foreground Seeds Selection 
As we have discussed the selection of background seeds in section 3.3, the foreground seed is 
also essential for the proposed algorithm. What is the best seed of salient object in a given 
image? It obviously depends on the content of the image. However, for the location of salient 
object is unknown before detection, it is hard to choose the prior of foreground. In order to 
improve the accuracy of our method, we exploit different ways to decide the seed. For 
example, (1) we use the center prior, which indicate that the salient object is always raised in 
the center of the image, to select the superpixel or superpixels located in the center of the 
image. (2) We consider selecting all of the regions except the background seeds as the salient 
seeds. (3) We also take all the regions at the four boundaries as background seeds and the rest 
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regions as foreground seeds to show which one is the best. We test our algorithm with three 
different seeds selection on MSRA1000 image database respectively. The results are shown in 
Fig.2.  
 

 
Fig. 3. Some examples. (a) Input image, (b) Ground truth, (c) Saliency maps by prior (3), (d) Saliency 

maps by prior (2), (e) Saliency maps by prior (1) 
 

 
Fig. 4. Quantitative comparisons of saliency maps produced by different approaches on SOD dataset 
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From Fig. 2, we can see that the performance of the proposed algorithm combined with 
center prior is better than others. Furthermore, it is obvious that eliminating erroneous 
boundaries before saliency estimation can improve the performance effectively. To analyze 
the reason specifically, we give some examples, shown in Fig.3, according to different seeds 
selection. Note that the images in Fig. 3 have a common Characteristic that the object located 
in the boundary of the image and the dissimilarity between different parts of an object is very 
large. When we choose (3) as the seeds selection, it is affected by the seeds, which should be a 
part of the object and near the boundary of the image, and cannot detect the object as a whole. 
In Fig. 3 (c), it can be seen that the proposed algorithm can only detect the part of the object 
near the center of the image. For (2), it takes the rest regions except boundary prior as the 
foreground seeds, containing the problematic boundary, and generates better results when 
compared with (3). The results obtained by (2) are shown in Fig. 3 (d). The shortcoming of (2) 
is that it is often affected by the clutter background or the noise of the salient object. Our 
proposed method takes center prior into considers and generates best results shown in Fig. 3 
(e).  Generally speaking, not limit to the strategy of salient seed selection mentioned above, the 
proposed algorithm can also exploit other method, i.e., key point detection, into our 
framework to detect salient objects. However, the time consuming of key point detection is 
larger than center prior, which limit the application of the salient object detection, since the 
saliency detection is often considered as a preprocessing step in digital image processing. In 
subsequent experiments, we only use center prior as the foreground seed to complete the 
salient object detection.  
 
 

 
Fig. 5. Quantitative comparisons of saliency maps produced by different approaches on MSRA dataset 
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Fig. 6. Quantitative comparisons of saliency maps produced by different approaches on SED dataset 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

SED1

 

 

XIE
LRMR
RC
DSR
LPS
DRFI
SMRW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

SED2

 

 

XIE
LRMR
RC
DSR
LPS
DRFI
SMRW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

SED2

 

 

SVO
PCA
MR
Zhu
BL
MS
SMRW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

SED1

 

 

SVO
PCA
MR
Zhu
BL
MS
SMRW

SVO MR XIE PCA LRMR DSR DRFI RC MS Zhu LPS BL SMRW
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SED1

 

 

Precision
Recall
F-measure

SVO MR XIE PCA RC DSR DRFI LRMR MS Zhu LPS BL SMRW
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SED2

 

 
Precision
Recall
F-measure



1726                                                             Zhai et al.: Salient Object Detection via Multiple Random Walks 

4.3 Comparison to Other Methods 
The quantitative comparison is shown in Fig. 4-Fig. 6. As can be seen, SMRW achieves the 
best precision on three image datasets. Generally speaking, the precision indicates the 
performance of the saliency detection algorithms compared with ground-truth saliency map. 
To compare the proposed model with others, we always see the precision value for different 
algorithms, for the precision value is the ratio of the correctly detected region over the whole 
detected region. It slightly improves by 2.18% and 1.02% over the second best algorithms, and 
2.83% and 1.64% over the third best algorithms in terms of precision scores according to SOD 
and MSRA respectively. In addition, SMRW performs well according to precision and recall 
when compare with MS [44], BL [46], Zhu [11] and LPS [45] in all datasets except SED2. In 
SED2, the precision of Zhu and LPS is higher than SMRW. Intuitively, our approach has 
limited ability when discovering all the salient objects within one image (higher recall) or 
finding the whole part of the salient object in MSRA SED1and SED2 database when 
compared to DRFI [9]. The reason might be that center prior used in SMRW can highlight the 
noise which is located in the center of the image. Since the noise is similar to the object, 
SMRW cannot separate the background and the foreground discriminately on this case. The 
improvements over state-of-the-arts are substantial when considering their performance and 
especially the adaptability of our model to different datasets.  
 

 
Fig. 7. A part of visual comparisons of the saliency maps 
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SED database 
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We also provide the visual comparison of different methods in Fig.7. As can be seen, our 
approach can deal well with the challenging cases where the background is cluttered. For 
example, in the second row, other approaches may be distracted by the textures on the 
background while our method almost successfully highlights the whole salient object.  

It is also worth pointing out that our approach performs well when the object touches the 
image border, e.g., the third row in MSRA and third row in SED in Fig.7, even though it 
violates the pseudo-background assumption used in MR. MR, which the first stage is based on 
the pseudo-background assumption, cannot label the saliency seeds correctly when the object 
touches the image border. LPS [45], which fuses both boundary and objectness labels based on 
a propagation scheme, exploits the superpixels of one boundary as the seeds of background.  
Note that it cannot highlight the whole object when the object located at this boundary. Zhu et 
al. [11] proposed a saliency model which uses robust background measure called boundary 
connectivity to determine the seeds of background. It can be seen that the saliency maps 
obtained by Zhu [11] and our algorithm are better than MR and LPS. 

For other state-of-the-art approaches, it can be seen that while SVO [40] detects the salient 
regions, parts of the background are erroneously detected as salient. XIE [43] detects the 
salient regions that parts of the background are erroneously detected as salient, in which the 
noise cannot be suppressed in most images. On the contrary, DSR [42] suppress most of the 
background well while always cannot preserve the object boundary well compared with XIE. 
It thus generates higher precision scores and less false positive rates. By relying solely on color, 
RC [6] can mistakenly focus on distinct background colors, e.g., the sky is captured instead of 
the building in the first row on SOD database. PCA [41] relies mostly on patterns; hence, it 
detects the outlines of the saliency objects, while missing their interior. LRMR [28], which 
integrates the high-level priors, focus on the center and the warm color of image. It is worth 
mentioning that the salient objects with warm colors such as red and yellow are more 
pronounced. BL [46], which exploits both weak and strong bootstrap learning models, 
integrate multi-scale saliency maps to improve the detection performance. However, it makes 
the algorithm cannot suppress the noise in the background and preserve the object boundary 
well. MS [44] detects the salient object by multi-scale analysis on superpixels. Unlike BL, the 
results of MS reserve the boundary of salient object better. However, it cannot reserve the 
object as a whole. For example, in the first line of Fig.7, the face of the girl cannot detect as the 
salient region. DRFI [9], which is based on multi-level image segmentation, uses the 
supervised learning approach to map the regional feature vector to a saliency score, and finally 
fuses the saliency scores across multiple levels, yielding the saliency map. When most of the 
images contain only one object in training set, it has limited ability to discover all the salient 
objects within one image. 
 

Table 1. Running time analysis of different methods on different databases (time/s) 
Datasets\Methods SVO PCA DRFI LRMR  MR MS LPS BL SMRW 

MSRA 241.82 39.12 13.97 47.28 1.06 14.68 1.96 58.14 2.46 
SOD 229.30 42.48 14.31 58.72 0.967 17.62 2.95 90.82 2.73 
SED1 219.95 21.37 11.4 36.96 0.65 9.55 1.27 118.42 2.02 
SED2 226.09 15.64 11.48 29.18 0.7 7.34 1.62 141.95 2.18 

 
To compare the running time of the proposed algorithm with other algorithms, we list the 

time cost in Table 1. Here we only list the approaches which use Matlab implementation, i.e., 
SVO, PCA, LRMR, MR and DRFI, for fair comparison. RC [6], which is implemented by C++ 
and maintained run-time of 0.6 seconds per image, is faster than the methods aforementioned. 
However, it is ranked lower in quantitative comparison. We run all algorithms on a machine 
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with Intel Dual Core E2160 1.8 GHz CPU and 1GB RAM. From Table 1, we can see that SVO 
is much slower than others. The most time-consuming step of SVO is the generation of generic 
object detector and bottom-up saliency detector. DRFI takes more than 10s for testing a given 
image, but takes more than 24 hours for training. Our approaches are faster than SVO, PCA, 
LRMR MS, BL and DRFI. As our approach needs much time to prepare the features, it is 
slower than MR and LPS but produce superior quality saliency maps than them. The proposed 
algorithm has relatively high time complexity. The most time consuming part is to calculate 
the dissimilarity of five different features. It is one of our future research issues to reduce the 
computational complexity. 

5. Conclusion 
We propose a bottom-up method to detect salient regions in images based on multiple random 
walkers. There are two major innovation aspects. Firstly, we propose a novel salient object 
detection algorithm which is based on multiple random walkers. Under multiple random walks 
framework, the seeds of background and foreground are considered as the agents to traverse 
the graph according to a transition matrix. As the process goes on, each walker repels the other 
walker, while forming a dominant region. Secondly, we design a method of background seeds 
selection for multiple random walkers in the proposed algorithm. Unlike conventional 
methods which use a problematic boundary as the seeds of the background in saliency 
estimation, we optimize the boundary influences by locating and eliminating erroneous 
boundaries before the saliency detection. We evaluate the proposed algorithm on three 
different datasets and demonstrate promising results with comparisons to state-of-the-art 
methods. Our future work will focus on effective salient object seed detection, which could be 
beneficial for handling more challenging cases and other kinds of high-level knowledge to be 
embedded into our framework. 
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