• Title/Summary/Keyword: Forecasting error

Search Result 539, Processing Time 0.023 seconds

A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data (격자기상예보자료 종류에 따른 미국 콘벨트 지역 DSSAT CROPGRO-SOYBEAN 모형 구동 결과 비교)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Hur, Jina;Song, Chan-Yeong;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.164-178
    • /
    • 2022
  • Uncertainties in weather forecasts would affect the reliability of yield prediction using crop models. The objective of this study was to compare uncertainty in crop yield prediction caused by the use of the weather forecast data. Daily weather data were produced at 10 km spatial resolution using W eather Research and Forecasting (W RF) model. The nearest neighbor method was used to downscale these data at the resolution of 5 km (W RF5K). Parameter-elevation Regressions on Independent Slopes Model (PRISM) was also applied to the WRF data to produce the weather data at the same resolution. W RF5K and PRISM data were used as inputs to the CROPGRO-SOYBEAN model to predict crop yield. The uncertainties of the gridded data were analyzed using cumulative growing degree days (CGDD) and cumulative solar radiation (CSRAD) during the soybean growing seasons for the crop of interest. The degree of agreement (DOA) statistics including structural similarity index were determined for the crop model outputs. Our results indicated that the DOA statistics for CGDD were correlated with that for the maturity dates predicted using WRF5K and PRISM data. Yield forecasts had small values of the DOA statistics when large spatial disagreement occured between maturity dates predicted using WRF5K and PRISM. These results suggest that the spatial uncertainties in temperature data would affect the reliability of the phenology and, as a result, yield predictions at a greater degree than those in solar radiation data. This merits further studies to assess the uncertainties of crop yield forecasts using a wide range of crop calendars.

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.

A comparison study for accuracy of exit poll based on nonresponse model (무응답모형에 기반한 출구조사의 예측 정확성 비교 연구)

  • Kwak, Jeongae;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.53-64
    • /
    • 2014
  • One of the major problems to forecast election, especially based on survey, is nonresponse. We may have different forecasting results depend on method of imputation. Handling nonresponse is more important in a survey about sensitive subject, such as presidential election. In this research, we consider a model based method of nonresponse imputation. A model based imputation method should be constructed based on assumption of nonresponse mechanism and may produce different results according to the nonresponse mechanism. An assumption of the nonresponse mechanism is very important precondition to forecast the accurate results. However, there is no exact way to verify assumption of the nonresponse mechanism. In this paper, we compared the accuracy of prediction and assumption of nonresponse mechanism based on the result of presidential election exit poll. We consider maximum likelihood estimation method based on EM algorithm to handle assumption of the model of nonresponse. We also consider modified within precinct error which Bautista (2007) proposed to compare the predict result.

Development and Application of the Mode Choice Models According to Zone Sizes (분석대상 규모에 따른 수단분담모형의 추정과 적용에 관한 연구)

  • Kim, Ju-Yeong;Lee, Seung-Jae;Kim, Do-Gyeong;Jeon, Jang-U
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.97-106
    • /
    • 2011
  • Mode choice model is an essential element for estimating- the demand of new means of transportation in the planning stage as well as in the establishment phase. In general, current demand analysis model developed for the mode choice analysis applies common parameters of utility function in each region which causes inaccuracy in forecasting mode choice behavior. Several critical problems from using common parameters are: a common parameter set can not reflect different distribution of coefficient for travel time and travel cost by different population. Consequently, the resulting model fails to accurately explain policy variables such as travel time and travel cost. In particular, the nonlinear logit model applied to aggregation data is vulnerable to the aggregation error. The purpose of this paper is to consider the regional characteristics by adopting the parameters fitted to each area, so as to reduce prediction errors and enhance accuracy of the resulting mode choice model. In order to estimate parameter of each area, this study used Household Travel Survey Data of Metropolitan Transportation Authority. For the verification of the model, the value of time by marginal rate of substitution is evaluated and statistical test for resulting coefficients is also carried out. In order to crosscheck the applicability and reliability of the model, changes in mode choice are analyzed when Seoul subway line 9 is newly opened and the results are compared with those from the existing model developed without considering the regional characteristics.

A Short-Term Traffic Information Prediction Model Using Bayesian Network (베이지안 네트워크를 이용한 단기 교통정보 예측모델)

  • Yu, Young-Jung;Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.765-773
    • /
    • 2009
  • Currently Telematics traffic information services have been various because we can collect real-time traffic information through Intelligent Transport System. In this paper, we proposed and implemented a short-term traffic information prediction model for giving to guarantee the traffic information with high quality in the near future. A Short-term prediction model is for forecasting traffic flows of each segment in the near future. Our prediction model gives an average speed on the each segment from 5 minutes later to 60 minutes later. We designed a Bayesian network for each segment with some casual nodes which makes an impact to the road situation in the future and found out its joint probability density function on the supposition of GMM(Gaussian Mixture Model) using EM(Expectation Maximization) algorithm with training real-time traffic data. To validate the precision of our prediction model we had conducted various experiments with real-time traffic data and computed RMSE(Root Mean Square Error) between a real speed and its prediction speed. As the result, our model gave 4.5, 4.8, 5.2 as an average value of RMSE about 10, 30, 60 minutes later, respectively.

An estimation method for non-response model using Monte-Carlo expectation-maximization algorithm (Monte-Carlo expectation-maximaization 방법을 이용한 무응답 모형 추정방법)

  • Choi, Boseung;You, Hyeon Sang;Yoon, Yong Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.587-598
    • /
    • 2016
  • In predicting an outcome of election using a variety of methods ahead of the election, non-response is one of the major issues. Therefore, to address the non-response issue, a variety of methods of non-response imputation may be employed, but the result of forecasting tend to vary according to methods. In this study, in order to improve electoral forecasts, we studied a model based method of non-response imputation attempting to apply the Monte Carlo Expectation Maximization (MCEM) algorithm, introduced by Wei and Tanner (1990). The MCEM algorithm using maximum likelihood estimates (MLEs) is applied to solve the boundary solution problem under the non-ignorable non-response mechanism. We performed the simulation studies to compare estimation performance among MCEM, maximum likelihood estimation, and Bayesian estimation method. The results of simulation studies showed that MCEM method can be a reasonable candidate for non-response model estimation. We also applied MCEM method to the Korean presidential election exit poll data of 2012 and investigated prediction performance using modified within precinct error (MWPE) criterion (Bautista et al., 2007).

Power Consumption Prediction Scheme Based on Deep Learning for Powerline Communication Systems (전력선통신 시스템을 위한 딥 러닝 기반 전력량 예측 기법)

  • Lee, Dong Gu;Kim, Soo Hyun;Jung, Ho Chul;Sun, Young Ghyu;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.822-828
    • /
    • 2018
  • Recently, energy issues such as massive blackout due to increase in power consumption have been emerged, and it is necessary to improve the accuracy of prediction of power consumption as a solution for these problems. In this study, we investigate the difference between the actual power consumption and the predicted power consumption through the deep learning- based power consumption forecasting experiment, and the possibility of adjusting the power reserve ratio. In this paper, the prediction of the power consumption based on the deep learning can be used as a basis to reduce the power reserve ratio so as not to excessively produce extra power. The deep learning method used in this paper uses a learning model of long-short-term-memory (LSTM) structure that processes time series data. In the computer simulation, the generated power consumption data was learned, and the power consumption was predicted based on the learned model. We calculate the error between the actual and predicted power consumption amount, resulting in an error rate of 21.37%. Considering the recent power reserve ratio of 45.9%, it is possible to reduce the reserve ratio by 20% when applying the power consumption prediction algorithm proposed in this study.

Compensation and Amendment of Highway Travel Demand Forecasting (고속도로 교통수요 보정모형에 관한 고찰)

  • Lee, Eui-Jun;Kim, Young-Sun;Yi, Yong-Ju;OH, Young-Tae;Choi, Keechoo;Yu, Jeong Whon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.86-95
    • /
    • 2013
  • In this study, a model of compensation and amendment of forecasted travel demand was developed to calculate the range of values depends on the changes in the risk factors, selecting factors that might affect traffic demand changes among risk factors. Selected factors are as follows: influenced area population, the number of registrated vehicle per person, ratio of service industry workers, and city intervals. Then this model is applied to six routes of expressway and the calculated value were compensated with error rate being reflected on each quartile value with respect to influenced area population (200,000 people standards). Result from appling developed model to Cheongwon-Sangju expressway suggests that the model could compensate the error rate by more than 50%, which in turn validate the effectiveness of the model developed. Some limitations and future research agenda have also been identified.

Application of Web Query Information for Forecasting Korean Unemployment Rate (실업률 예측을 위한 인터넷 검색 정보의 활용)

  • Kwon, Chi-Myung;Hwang, Sung-Won;Jung, Jae-Un
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • Unemployment is related to social issues as well as personal economics activity so various policies have been made to reduce the unemployment rate in many countries. Because of delay inherent in the survey mechanism to collect unemployment data, it takes lots of time to acquire survey unemployment data. To develop proper policies for reducing unemployment rate at the right time, it is quite critical to obtain faster and more accurate information concerning about unemployment level. To remedy this problem, recently an advanced analytics utilizing internet queries is suggested. To examine the potential of Web query information, this research investigates the usefulness of internet activity data to predict Korean unemployment rate. One of selected web-query data(unemployment claim) has a quite strong correlation with unemployment rate. This research employes a time series approach of the ARIMA model that utilizes the information of keyword queries provided by the Naver(Korean representative portal site) trend together with unemployment rate data provisioned from Statistics Korea. With respect to model selection guidelines of mean squared error and prediction error, the model with utilizing the web query information shows better results than the model without such information. This suggests that there is a strong potential for the used method, which needs to be further explored.

An Analysis on Inter-Regional Price Linkage of Petroleum Products (석유제품 가격의 지역 간 연계성 분석)

  • Song, Hyojun;Lee, Hahn Shik
    • Environmental and Resource Economics Review
    • /
    • v.28 no.1
    • /
    • pp.121-145
    • /
    • 2019
  • This paper investigates the relationship between the oil price and the major petroleum products prices at the trading hubs such as Singapore, North West Europe and the US New York Harbor. We focus on the lead-lag relationship between the weekly petroleum prices from 2009 to 2016 based on the vector error correction model. We find that the oil price leads the prices of petroleum products in the long term, while there is bidirectional causality in the short term. On the other hand, prices of petroleum products in regions with high import dependency, such as Europe gas oil and jet fuel price, are exogenous in the long term. We also present evidence that prices of petroleum products in region with a large global-market share lead prices in other regions. However, if the region is in an over-production situation and low industry concentration, it may lose its price leadership due to intense competition. The result in this study can provide a useful information to petroleum refining companies in forecasting fluctuations of product price, and hence in planning their regional arbitrage trading activities.