• Title/Summary/Keyword: Forecasting Parameters

Search Result 303, Processing Time 0.032 seconds

A Case Study on the Auto-Adjustment System of the Regression Forecasting Model Parameters (Regression 모형(模型)에 있어 모수(母數)의 자동조절(自動調節) 시스템에 관한 사례연구(事例硏究))

  • Kim, Gwang-Seop;Lee, Chang-Hyeong;Hong, U-Chang
    • Journal of Korean Society for Quality Management
    • /
    • v.9 no.2
    • /
    • pp.2-9
    • /
    • 1981
  • This paper deals with the critical role when adjustments of the regression model parameters play in forecasting. It attempts to formulate a methodology or systematic procedure for (1) detecting the points of adjustments and (2) finding the adjusted regression model parameters. The paper shows how the information of past experience in forecasting can be used future forecasting.

  • PDF

SVM Load Forecasting using Cross-Validation (교차검증을 이용한 SVM 전력수요예측)

  • Jo, Nam-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.485-491
    • /
    • 2006
  • In this paper, we study the problem of model selection for Support Vector Machine(SVM) predictor for short-term load forecasting. The model selection amounts to tuning SVM parameters, such as the cost coefficient C and kernel parameters and so on, in order to maximize the prediction performance of SVM. We propose that Cross-Validation method can be used as a model selection algorithm for SVM-based load forecasting technique. Through the various experiments on several data sets, we found that the difference between the prediction error of SVM using Cross-Validation and that of ideal SVM is less than 5%. This shows that SVM parameters for load forecasting can be efficiently tuned by using Cross-Validation.

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies

  • Chandra, D. Rakesh;Kumari, Matam Sailaja;Sydulu, Maheswarapu;Grimaccia, F.;Mussetta, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1812-1821
    • /
    • 2014
  • Wind has been a rapidly growing renewable power source for the last twenty years. Since wind behavior is chaotic in nature, its forecasting is not easy. At the same time, developing an accurate forecasting method is essential when wind farms are integrated into the power grid. In fact, wind speed forecasting tools can solve issues related to grid stability and reserve allocation. In this paper 30 hours ahead wind speed profile forecast is proposed using Adaptive Wavelet Neural Network (AWNN). The implemented AWNN uses a Mexican hat mother Wavelet, and Morlet Mother Wavelet for seven, eight and nine levels decompositions. For wind speed forecasting, the time series data on wind speed has been gathered from the National Renewable Energy Laboratory (NREL) website. In this work, hourly averaged 10-min wind speed data sets for the year 2004 in the Midwest ISO region (site number 7263) is taken for analysis. Data sets are normalized in the range of [-1, 1] to improve the training performance of forecasting models. Total 8760 samples were taken for this forecasting analysis. After the forecasting phase, statistical parameters are calculated to evaluate system accuracy, comparing different configurations.

Statistical Modeling on Weather Parameters to Develop Forest Fire Forecasting System

  • Trivedi, Manish;Kumar, Manoj;Shukla, Ripunjai
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.221-235
    • /
    • 2009
  • This manuscript illustrates the comparative study between ARIMA and Exponential Smoothing modeling to develop forest fire forecasting system using different weather parameters. In this paper, authors have developed the most suitable and closest forecasting models like ARIMA and Exponential Smoothing techniques using different weather parameters. Authors have considered the extremes of the Wind speed, Radiation, Maximum Temperature and Deviation Temperature of the Summer Season form March to June month for the Ranchi Region in Jharkhand. The data is taken by own resource with the help of Automatic Weather Station. This paper consists a deep study of the effect of extreme values of the different parameters on the weather fluctuations which creates forest fires in the region. In this paper, the numerical illustration has been incorporated to support the present study. Comparative study of different suitable models also incorporated and best fitted model has been tested for these parameters.

Real-Time Flood Forecasting Using Rainfall-Runoff Model(I) : Theory and Modeling (강우-유출모형을 이용한 실시간 홍수예측(I) : 이론과 모형화)

  • 정동국;이길성
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.89-99
    • /
    • 1994
  • Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of Flood forecasting in Korea has been based on the off-line parameter estimation method. But recent flood forecasting studies explore on-line recursive parameter estimation algorithms. In this study, a simultaneous adaptive estimation of system states and parameters for rainfall-runoff model is investigated for on-line real-time flood forecasting and parameter estimation. The proposed flood routing system is composed of ø-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.-index in the assessment of effective rainfall and the cascade of nonlinear reservoirs accounting for translation effect in flood routing. To combine the flood routing model with a parameter estimation model, system states and parameters are treated with the extended state-space formulation. Generalized least squares and maximum a posterior estimation algorithms are comparatively examined as estimation techniques for the state-space model. The sensitivity analysis is to investigate the identifiability of the parameters. The index of sensitivity used in this study is the covariance matrix of the estimated parameters.

  • PDF

Forecasting the Flood Inflow into Irrigation Reservoir (관개저수지의 홍수유입량 예측)

  • 문종필;엄민용;박철동;김태얼
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.512-518
    • /
    • 1999
  • Recently rainfall and water evel are monitored via on -line system in real-time bases. We applied the on-line system to get the rainfall and waterlevel data for the development of the real-time flood forecasting model based on SCS method in hourly bases. Main parameters for the model calibration are concentration time of flood and soil moisture condition in the watershed. Other parameters of the model are based on SCS TR-%% and DAWAST model. Simplex method is used for promoting the accuracy of parameter estimation. The basic concept of the model is minimizing the error range between forcasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time. The flood forecasting model developed was applied to the Yedang and Topjung reservoir.

  • PDF

A Basic Study on the Flood-Flow Forecasting System Model with Integrated Optimal Operation of Multipurpose Dams (댐저수지군의 최적연계운영을 고려한 유출예측시스템모형 구축을 위한 기초적 연구)

  • 안승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.48-60
    • /
    • 1995
  • A flood - flow forecasting system model of river basins has been developed in this study. The system model consists of the data management system(the observation and telemetering system, the rainfall forecasting and data-bank system), the flood runoff simulation system, the reservoir operation simulation system, the flood forecasting simulation system, the flood warning system and the user's menu system. The Multivariate Rainfall Forecasting model, Meteorological factor regression model and Zone expected rainfall model for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood - flow forecasting. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, 7 streamfiow and other hydrological data during the past flood periods.

  • PDF

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

Short-Term Load Forecasting Using Neural Networks and the Sensitivity of Temperatures in the Summer Season (신경회로망과 하절기 온도 민감도를 이용한 단기 전력 수요 예측)

  • Ha Seong-Kwan;Kim Hongrae;Song Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.259-266
    • /
    • 2005
  • Short-term load forecasting algorithm using neural networks and the sensitivity of temperatures in the summer season is proposed. In recent 10 years, many researchers have focused on artificial neural network approach for the load forecasting. In order to improve the accuracy of the load forecasting, input parameters of neural networks are investigated for three training cases of previous 7-days, 14-days, and 30-days. As the result of the investigation, the training case of previous 7-days is selected in the proposed algorithm. Test results show that the proposed algorithm improves the accuracy of the load forecasting.