• Title/Summary/Keyword: Forecast accuracy

Search Result 490, Processing Time 0.023 seconds

Modeling the Urban Railway Demand Estimation by Station Reflecting Station Access Area on Foot (역세권을 반영한 도시철도 역별 수요추정 모형 개발)

  • Son, Ui-Yeong;Kim, Jae-Yeong;Jeong, Chang-Yong;Lee, Jong-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.15-22
    • /
    • 2009
  • There exist some limits when we forecast urban railway demand by traditional 4 step model. The first reason is that the model based on socioeconomic data by an administrative unit, 'Dong', yields a 'Dong' unit trip matrix. But a 'Dong' often has two or more stations. The second reason is that urban railway demand by station would be affected rather by station access area on foot than by a 'Dong' unit. So the model based on 'Dong' characteristic data have some inaccuracies in itself. Owing to the limits of the model based on 'Dong' unit data, there exits some difficulty in forecasting urban railway demand by station. So this paper studied two alternatives. The first is to forecast the demand by using the data of station access area on foot rather than 'Dong' unit data. This needs too much time and effort to collect data and analyse them, while the accuracy of the model didn't improve a lot. The second is to adjust the location of 'Dong' centroid and the length of centroid connector link. By this way we can reflect the characteristics of station access area on foot under traditional 4 step model. Comparing the expected demand to the observed data for each station, the result looks like very similar.

Analysis of Heavy Rain Hazard Risk Based on Local Heavy Rain Characteristics and Hazard Impact (지역 호우특성과 재해영향을 고려한 호우재해위험도 분석)

  • Yoon, Jun-Seong;Koh, June-Hwan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.37-51
    • /
    • 2017
  • Despite the improvement in accuracy of heavy rain forecasting, socioeconomic costs due to heavy rain hazards continue to increase. This is due to a lack of understanding of the effects of weather. In this study, the risk of heavy rain hazard was analyzed using the concepts of hazard, vulnerability, and exposure, which are key concepts of impact forecast presented by WMO. The potential impacts were constructed by the exposure and vulnerability variables, and the hazard index was calculated by selecting three variables according to the criteria of heavy rain warning. Weights of the potential impact index were calculated by using PCA and hazard index was calculated by applying the same weight. Correlation analysis between the potential impact index and damages showed a high correlation and it was confirmed that the potential impact index appropriately reflects the actual damage pattern. The heavy rain hazard risk was estimated by using the risk matrix consisting of the heavy rain potential impact index and the hazard index. This study provides a basis for the impacts analysis study for weather warning with spatial/temporal variation and it can be used as a useful data to establish the local heavy rain hazard prevention measures.

An introduction of new time series forecasting model for oil cargo volume (유류화물 항만물동량 예측모형 개발 연구)

  • Kim, Jung-Eun;Oh, Jin-Ho;Woo, Su-Han
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.81-98
    • /
    • 2018
  • Port logistics is essential for Korea's economy which heavily rely on international trade. Vast amounts of capital and time are consumed for the operation and development of ports to improve their competitiveness. Therefore, it is important to forecast cargo volume in order to establish the optimum level of construction and development plan. Itemized forecasting is necessary for appropriate port planning, since disaggregate approach is able to provides more realistic solution than aggregate forecasting. We introduce a new time series model which is Two-way Seasonality Multiplied Regressive Model (TSMR) to forecast oil cargo volume, which accounts for a large portion of total cargo volume in Korea. The TSMR model is designed to take into account the characteristics of oil cargo volume which exhibits trends with short and long-term seasonality. To verify the TSMR model, existing forecasting models are also used for a comparison reason. The results shows that the TSMR excels the existing models in terms of forecasting accuracy whereas the TSMR displays weakness in short-term forecasting. In addition, it was shown that the TSMR can be applied to other cargoes that have trends with short- and long-term seasonality through testing applicability of the TSMR.

A Study on the Test of Homogeneity for Nonlinear Time Series Panel Data Using Bilinear Models (중선형 모형을 이용한 비선형 시계열 패널자료의 동질성검정에 대한 연구)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.261-266
    • /
    • 2014
  • When the number of parameters in the time series model are diverse, it is hard to forecast because of the increasing error by a parameter estimation. If the homogeneity hypothesis which was obtained from the same model about severeal data for the time series is selected, it is easy to get the predictive value better. Nonlinear time-series panel data for each parameter for each time series, since there are so many parameters that are present, and the large number of parameters according to the parameter estimation error increases the accuracy of the forecast deteriorated. Panel present in the time series of multiple independent homogeneity is satisfied by a comprehensive time series to estimate and to test of the parameters. For studying about the homogeneity test for the m independent non-linear of the time series panel data, it needs to set the model and to make the normal conditions for the model, and to derive the homogeneity test statistic. Finally, it shows to obtain the limit distribution according to ${\chi}^2$ distribution. In actual analysis,, we can examine the result for the homogeneity test about nonlinear time series panel data which are 2 groups of stock price data.

An Index for Measuring the Degree of Completeness of BIM-based Quantity Take-Off (BIM기반 물량산출 완성도 측정을 위한 지수 개발)

  • Lee, Chang-Hee;Kim, Seong-Ah;Chin, Sang-Yoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.79-92
    • /
    • 2011
  • Quantity take-off is one of the critical tasks that determine the cost of a construction project, and its result should be accurate and reliable. BIM-based quantity take-off is a very attractive process for practitioners since the quantity take-off can be done automatically in a fast and accurate way. However, the result of BIM-based quantity take-off can be varied depending on how BIM was modeled. As a project progresses, more detailed design information is getting available, and it can be expected that the degree of completeness and accuracy for the BIMbased quantity take-off is going to be improved as well. However, when estimation is performed at each stage of a project life-cycle, there is no way to measure or forecast how accurate of the quantity take-off result from the BIM data given at the current stage. Therefore, this research derived factors that affect the BIM-based quantity takeoff and developed a methodology and framework to measure and forecast the completeness of BIM-based quantity take-off. The measurement framework and index that are proposed by this research was verified and validated for their consistency and feasibility through six pilot projects.

Multi-beam Echo Sounder Operations for ROV Hemire - Exploration of Mariana Hydrothermal Vent Site and Post-Processing (심해무인잠수정 해미래를 이용한 다중빔 음향측심기의 운용 - 마리아나 열수해역 탐사 결과 및 후처리 -)

  • Park, Jin-Yeong;Shim, Hyungwon;Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Yoo, Seong-Yeol;Jeong, Woo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • This paper presents the operations of a multi-beam echo sounder (MBES) installed on the deep-sea remotely operated vehicle (ROV) Hemire. Hemire explored hydrothermal vents in the Forecast volcano located near the Mariana Trench in March of in 2006. During these explorations, we acquired profiling points on the routes of the vehicle using the MBES. Information on the position, depth, and attitude of the ROV are essential to obtain higher accuracy for the profiling quality. However, the MBES installed on Hemire does not have its own position and depth sensors. Although it has attitude sensors for roll, pitch, and heading, the specifications of these sensors were not clear. Therefore, we had to merge the high-performance sensor data for the motion and position obtained from Hemire into the profiling data of the MBES. Then, we could properly convert the profiling points with respect to the Earth-fixed coordinates. This paper describes the integration of the MBES with Hemire, as well as the coordinate conversion between them. Bathymetric maps near the summit of the Forecast volcano were successfully collected through these processes. A comparison between the bathymetric maps from the MBES and those from the Onnuri Research Vessel, the mother ship of the ROV Hemire for these explorations, is also presented.

A Study on Prediction of Inundation Area considering Road Network in Urban Area (도시지역 도로 네트워크를 활용한 침수지역 예측에 관한 연구)

  • Son, Ah Long;Kim, Byunghyun;Han, Kun Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.307-318
    • /
    • 2015
  • In this study, the efficiency of two-dimensional inundation analysis using road network was demonstrated in order to reduce the simulation time of numerical model in urban area. For this objective, three simulation conditions were set up: Case 1 considered only inundation within road zone, while Case 2 and 3 considered inundation within road and building zone together. Accordingly, Case 1 used grids generated based on road network, while Case 2 and 3 used uniform and non-uniform grids for whole study area, respectively. Three simulation conditions were applied to Samsung drainage where flood damage occurred due to storm event on Sep. 21, 2010. The efficiency of suggested method in this study was verified by comparison the accuracy and simulation time of Case 1 and those of Case 2 and 3. The results presented that the simulation time was fast in the order of Case 1, 2 and 3, and the fit of inundation area between each case was more than 85% within road zone. Additionally, inundation area of building zone estimated from inundation rating index gave a similar agreement under each case. As a result, it is helpful for study on real-time inundation forecast warning to use a proposed method based on road network and inundation rating index for building zone.

Data processing system and spatial-temporal reproducibility assessment of GloSea5 model (GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가)

  • Moon, Soojin;Han, Soohee;Choi, Kwangsoon;Song, Junghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.761-771
    • /
    • 2016
  • The GloSea5 (Global Seasonal forecasting system version 5) is provided and operated by the KMA (Korea Meteorological Administration). GloSea5 provides Forecast (FCST) and Hindcast (HCST) data and its horizontal resolution is about 60km ($0.83^{\circ}{\times}0.56^{\circ}$) in the mid-latitudes. In order to use this data in watershed-scale water management, GloSea5 needs spatial-temporal downscaling. As such, statistical downscaling was used to correct for systematic biases of variables and to improve data reliability. HCST data is provided in ensemble format, and the highest statistical correlation ($R^2=0.60$, RMSE = 88.92, NSE = 0.57) of ensemble precipitation was reported for the Yongdam Dam watershed on the #6 grid. Additionally, the original GloSea5 (600.1 mm) showed the greatest difference (-26.5%) compared to observations (816.1 mm) during the summer flood season. However, downscaled GloSea5 was shown to have only a -3.1% error rate. Most of the underestimated results corresponded to precipitation levels during the flood season and the downscaled GloSea5 showed important results of restoration in precipitation levels. Per the analysis results of spatial autocorrelation using seasonal Moran's I, the spatial distribution was shown to be statistically significant. These results can improve the uncertainty of original GloSea5 and substantiate its spatial-temporal accuracy and validity. The spatial-temporal reproducibility assessment will play a very important role as basic data for watershed-scale water management.

Fluctuations and Time Series Forecasting of Sea Surface Temperature at Yeosu Coast in Korea (여수연안 표면수온의 변동 특성과 시계열적 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun Ho;Jeon, Sang-Back
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Seasonal variations and long term linear trends of SST (Sea Surface Temperature) at Yeosu Coast ($127^{\circ}37.73^{\prime}E$, $34^{\circ}37.60^{\prime}N$) in Korea were studied performing the harmonic analysis and the regression analysis of the monthly mean SST data of 46 years (1965-2010) collected by the Fisheries Research and Development Institute in Korea. The mean SST and the amplitude of annual SST variation show $15.6^{\circ}C$ and $9.0^{\circ}C$ respectively. The phase of annual SST variation is $236^{\circ}$. The maximum SST at Yeosu Coast occurs around August 26. Climatic changes in annual mean SST have had significant increasing tendency with increase rate $0.0305^{\circ}C/Year$. The warming trend in recent 30 years (1981-2010) is more pronounced than that in the last 30 years (1966-1995) and the increasing tendency of winter SST dominates that of the annual SST. The time series model that could be used to forecast the SST on a monthly basis was developed applying Box-Jenkins methodology. $ARIMA(1,0,0)(2,1,0)_{12}$ was suggested for forecasting the monthly mean SST at Yeosu Coast in Korea. Mean absolute percentage error to measure the accuracy of forecasted values was 8.3%.

The probabilistic drought forecast based on ensemble using improvement of the modified surface water supply index (Modified surface water supply index 개선을 통한 앙상블 기반 확률론적 가뭄전망)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Oh, Ji Hwan;Jo, Joon Won
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.835-849
    • /
    • 2016
  • Accurate drought outlook and drought monitoring have been preceded recently to mitigate drought damages that further deepen. This study improved the limitations of the previous MSWSI (Modified Surface Water Supply Index) used in Korea and carried out probabilistic drought forecasts based on ensemble technique with the improved MSWSI. This study investigated available hydrometeorological components in Geum river basin and supplemented appropriate components (dam water level, dam release discharge) in addition to the four components (streamflow, groundwater, precipitation, dam inflow) usedin the previous MSWSI to each sub-basin. Although normal distribution was fitted in the previous MSWSI, the most suitable probabilistic distributions to each meteorological component were estimated in this study, including Gumbel distribution for precipitation and streamflow data; 2-parameter log-normal distribution for dam inflow, water level, and release discharge data; 3-parameter log-normal distribution for groundwater. To verify the improved MSWSI results using historical precipitation and streamflow, simulated drought situations were used. Results revealed that the improved MSWSI results were closer to actual drought than previous MSWSI results. The probabilistic forecasts based on ensemble technique with improved MSWSI were performed and evaluated in 2006 and 2014. The accuracy of the improved MSWSI was better than the previous MSWSI. Moreover, the drought index of actual drought was included in ranges of drought forecasts using the improved MSWSI.