• Title/Summary/Keyword: Forced Vortex Method

Search Result 30, Processing Time 0.021 seconds

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • Kang S. J.;Tanahashi M.;Miyauchi T.;Lee Y. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • KANG Shin-Jeong;TANAHASHI Mamoru;MIYAUCHI Toshio;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

A Fundamental Study of the Subsonic Spiral Jet (아음속 스파이럴 제트 유동에 관한 기초적 연구)

  • Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder (주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

Simultaneous Measurement of Wind Pressures and Displacements on Tall Building (풍압과 변위의 동시계측을 통한 고층건물의 공력 특성 평가)

  • Kim, Yong Chul;Lo, Yuan-Lung;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Vortex-induced vibration and instability vibration of tall buildings are very important fluid-structure interaction phenomenon, and many fundamental questions concerning the influence of body movement on the unsteady aerodynamic force remain unanswered. For tall buildings, there are two experimental methods to investigate the characteristics of unsteady aerodynamic forces, one is forced vibration method and the other is free vibration method. In the present paper, a free vibration method was used to investigate the unsteady aerodynamic force on tall building whose aspect ratio is 9 under boundary layer simulating city area. Wind pressures on surfaces and tip displacements were measured simultaneously, and the characteristics of tip displacements and generalized forces were discussed. It was found that variation of across-wind displacements showed different trend between the case when wind speed increases and wind speed decreases, and the fluctuating generalize forces in across-wind direction of vibrating model are larger than that of static model near the resonant wind speed and approach to the static value. And for higher wind speed range, there were two peaks in across-wind power spectra of generalize forces of vibrating model, which means that two frequency components are predominant in unsteady aerodynamic forces.

Low Speed Design of Rear Rotor in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Momosaki, Simpei;Imanishi, Toshiki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • The application of contra-rotating rotors for higher specific speed pump has been proposed in our studies, which is in principle effective for reducing the rotational speed and/or the pump size under the same specification of conventional axial flow pump. In the previous experiments of our prototype, the cavitation inception at the tip region of the rear rotor rather than that of the front rotor and the strong potential interaction from the suction surface of the rear rotor blade to the pressure surface of the front one were observed, indicating the possibility to further improve the pump performance by optimizing rotational speed combination between the two rotors. The present research aims at the design of rear rotor with lower rotational speed. Considering the fact that the incoming flow velocity defects at the tip region of the rear rotor, an integrated inflow model of 'forced vortex' and 'free vortex' is employed. The variation of maximum camber location from hub to tip as well as other related considerations are also taken into account for further performance improvement. The ideas cited above are separately or comprehensively applied in the design of three types of rear rotor, which are subsequently simulated in ANSYS CFX to evaluate the related pump performance and therefore the whole low speed design idea. Finally, the experimental validation is carried out on one type to offer further proofs for the availability of the whole design method.

Response characteristics and suppression of torsional vibration of rectangular prisms with various width-to-depth ratios

  • Takai, Kazunori;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.1-22
    • /
    • 2006
  • The response characteristics and suppression of flow-induced vibrations of rectangular prisms with various width-to-depth ratios were experimentally investigated. The prisms were rigid and elastically mounted at both ends to enable constrained torsional vibrations only. The present study focused on torsional vibrations, one of the three types of flow-induced vibrations generated in a rectangular prism. First, the response characteristics of torsional vibrations generated in rectangular prisms were investigated by free-vibration tests. It was found that the response characteristics of torsional vibrations generated in rectangular prisms could be classified into six patterns depending on the width-to-depth ratio. Next, the response characteristics of torsional vibrations observed in the free-vibration tests were reproduced by forced-vibration tests, and the mechanisms by which the three types of flow-induced vibrations, low-speed torsional flutter, vortex excitation and high-speed torsional flutter, are generated in the rectangular prisms were elucidated on the basis of characteristics of fluid forces and visualized flow patterns. Experiments were also carried out to establish an effective method for suppressing flow-induced vibrations generated in the rectangular prisms, and it was found that low-speed torsional flutter and high-speed torsional flutter could be suppressed by placing a small normal plate upstream of the prism, which results in suppression of the alternating rolling-up of the shear layers separating from the leading edges of the prism. It was also found that vortex excitation could be suppressed by placing a splitter plate downstream of the prism, which results in suppression of the generation of wake vortices.

Numerical Study of Flow Around an Oscillating Sphere (진동하는 구 주위의 유동에 관한 수치적 연구)

  • Lee, Jin-Woog;Lee, Dae-Sung;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.767-772
    • /
    • 2010
  • The incompressible viscous flow past a sphere under forced oscillation is numerically investigated at a Reynolds number of 300. The immersed boundary method is used to handle the sphere oscillating vertically to the streamwise direction. There are two important variables to characterize the oscillating state of a sphere. One is an oscillating amplitude normalized by the sphere diameter is set as a fixed number of 0.2. Another is the frequency ratio which is defined by $f_e/f_o$, where fe and fo are the excited frequency and the natural frequency of vortex shedding for the stationary sphere. In this study, three different frequency ratios of 0.8, 1.0 and 1.2 are considered. The results show a periodic flow with hairpin vortices shedding from upper and lower positions as well as vortical legs obliquely extended by oscillating motion of sphere. The enveloping vortical structure experience rupture twice in one period of oscillation. As the frequency of oscillation is increased, the vortical legs are getting shorter and eventually the hairpin vortices are much closer to the adjacent one.

Heat transfer and pressure drop with the turbulence promoter in a vertical PCB Channel (난류 발생기의 형상에 따른 수직 PCB채널에서의 열전달 및 압력손실 변화)

  • Park, Chan-U;Jang, Seung-Il;Jeong, Jong-Su;Nam, Pyeong-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2277-2288
    • /
    • 1996
  • This study was performed to analyze the cooling effect of heated ribs which are frequently used for cooling of electronic parts, using the numerical method. To prevent the excessive pressure drop due to turbulence promoters for the enhancement of heat transfer rate especially, the effect of the angle of turbulence promoter was investigated by the numerical analysis. Heat transfer rate with turbulence promoters with rectangular cross-section increased by 13% in average, but the coefficient of pressure drop increased by 1.68 times than that without them. In the present study, triangular cross-sectional shape turbulence promoters were suggested and numerically tested. Pressure drop of turbulence promoter with the 30 degree triangular cross-sectional shape decreased by 30% from that of rectangular cross-section promoters while heat transfer rate was almost the same. While with 4 turbulence promoters, the heat transfer rate increased by 21%, the pressure drop increased 4 times. It means that the higher capacity of cooling fan should be needed. With the triangular cross-sectional shape, the size of vortex region at the rear of promoters became considerably smaller, so pressure drop became smaller. The effect of the change of cross-sectional shape was not found in the flow pattern near the ribs, so that heat transfer characteristics in the ribs were not changed.