• Title/Summary/Keyword: Force measurement

Search Result 1,614, Processing Time 0.028 seconds

Design and Evaluation of Uncertainty for 6-component Force/Moment Calibration Machine (6분력 힘/모멘트 교정기의 설계 및 불확도 평가)

  • 김갑순;강대임;송후근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.68-72
    • /
    • 1997
  • This paper presents the design and the evaluation of the 6-component force/moment calibration machine which h a s t h e maximum capacities of 500 N in forces and 50 Nm in moments. This calibration machine consists of body. fixture. force generating system, moment generating system. The expanded uncertainty of the calibration machine is evaluated by calculating the A type uncertainty. $U_A$ and B type uncertainty, $U_B$. The evaluation results. this system has the expanded uncertainty of less than $2{\times}10^[-2]$ in respective force and moment components.

  • PDF

A New Model of Magnetic Force in Magnetic Levitation Systems

  • Lee, Y.S.;Yang, J.H.;Shim, S.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.584-592
    • /
    • 2008
  • In this paper, we propose a new model of the magnetic control force exerted on the levitation object in magnetic levitation systems. The model assumes that the magnetic force is a function of the voltage applied to an electromagnet and the position of a levitation object. The function is not explicitly expressed but represented through a 2D lookup table constructed from the experimentally measured data. Unlike the conventional model that reveals only local characteristics of the magnetic force, the proposed model shows global characteristics satisfactorily. Specially devised measurement equipment is utilized in order to gather the data required for model construction. An experimental procedure to construct the model is presented. We apply the proposed model to designing a sliding mode controller for a lab-built magnetic system. The validity of the proposed model is illustrated by comparing the performances of the controller adopting the conventional model with that of the controller adopting the proposed model.

Estimation of compensatory hypertrophy in lower urinary system using void force measurement (배뇨력 측정을 통한 하부요로계의 보상성기능항진 평가)

  • Jeong, Do-Un;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.449-456
    • /
    • 2006
  • The purpose of urodynamic investigation is to obtain the information on the function of the urinary system. The aim of this study is to acquire the useful information of lower urinary tract symptom (LUTS) diagnosis through void force signal as noninvasive method. The system which could evaluate the function of compensatory hypertrophy with noninvasive and comfortable method was implemented to measure uroflow and void force during urination. The implemented system composes of the sensor parts, signal conditioning parts and PC monitoring program. For the evaluation of the implemented system, the simulation of control part of the system was performed and the model system for the lower urinary system was designed. The superiority of a measuring characteristic of the implemented system was verified using the model system. From the evaluation of the model system, we have found out that the void force was dependent on the occlusion degree and compensatory hypertrophy significantly.

Force identification by using specific forms of PVDF patches

  • Chesne, Simon;Pezerat, Charles
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1203-1214
    • /
    • 2015
  • This paper deals with the experimental validation of the use of PVDF Patches for the assessment of spatial derivatives of displacement field. It focuses more exactly on the shear Force Identification by using Specific forms of PVDF patcHes (FISH) on beams. An overview of the theoretical approach is exposed. The principle is based on the use of the weak form of the equation of motion of the beam which allows the shear forces to be extracted at one edge of the sensor when this last has a specific form. The experimental validation is carried out with a cantilever steel beam, excited by a shaker at its free boundary. The validation consists in comparing the shear force measured by the designed sensor glued at the free edge and the directly measured force applied by the shaker. The sensor is made of two patches, called the "stiffness" patch and the "mass" patch. The use of both patches allows one to identify correctly the shear force on a large frequency domain. The use of only the stiffness patch is valid in the low frequency domain and has the advantage to have a frequency-independent gain that allows its use in real time.

Flight Test of Pitch Control Force for an Airplane (항공기 피치 조종력 비행시험)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.20-26
    • /
    • 2014
  • This paper presents the procedures and the results of the pitch control force via flight test for a light airplane in order to make out the stability of the aircraft and the compliance with concerned regulation. The flight test procedures were determined in order to obtain the aircraft type certification. The instrumentation equipments including airspeed indicator, accelerometer, and pitch control force measurement tools are used to perform the flight test. For the flight test, the airspeed and the pitch control force with related normal acceleration are measured sustaining turn flight with bank angle derived from trim speed. The flight test results showed that the handling qualities of the airplane are complied with the KAS-23, the regulation of the Korean government for the light airplane type certification.

Tribological Properties of Annealed Diamond-like Carbon Film Synthesized by RF PECVD Method

  • Choi, Won-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.118-122
    • /
    • 2006
  • Diamond-like carbon (DLC) films were prepared on silicon substrates by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the tribological properties of the DLC films using friction force microscopy (FFM). The films were annealed at various temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film was observed by scanning electron microscopy (SEM) and surface profile analysis. The surface morphology and surface energy of the films were examined using atomic force microscopy and contact angle measurement, respectively. The hardness of the DLC film was measured as a function of the post annealing temperature using a nano-indenter. The tribological characteristics were investigated by atomic force microscopy in FFM mode.

Experimental Study of Water Impact Loads on Symmetric and Asymmetric Wedges (대칭 및 비대칭 2차원 쐐기의 입수 충격에 관한 실험적 연구)

  • Kim, Kyong-Hwan;Lee, Dong Yeop;Hong, Sa Young;Kim, Young-Shik;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 2014
  • In the present study, the water impact loads on two-dimensional symmetric and asymmetric wedges were mainly studied. The impact pressure and force were measured during a vertical drop of the symmetric and asymmetric wedges. The measured pressure was compared with analytic solutions. The measured force at a local area of the wedge was compared with the integrated pressures and analytic solutions. Some findings on symmetric and asymmetrical wedge drops are presented, and the reliability of the force sensor used for the measurement of the local impact force is discussed.

Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot (센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시)

  • Ahn, Kuk-Hyun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.

Grip Force, Finger Force, and Comfort analyses of Young and Old People by Hand Tool Handle Shapes (수공구 손잡이 형태에 따른 청.노년층의 악력과 손가락 힘 및 편안함 분석)

  • Kong, Yong-Ku;Sohn, Seong-Tae;Kim, Dae-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2009
  • The purpose of this study was to evaluate aging (young and old), gender (male and female), and handle shape effects on grip force, finger force, and subjective comfort. Four handle shapes of A, D, I, and V were implemented by a multi-finger force measurement (MFFM) system which was developed to measure every finger force with different grip spans. Forty young (20 males and 20 females) and forty old (20 males and 20 females) subjects participated in twelve gripping tasks and rated their comfort for all handles using a 5-point scale. Grip forces were calculating by summation of all four forces of the index, middle, ring and little fingers. Results showed that young males (283.2N) had larger gripping force than old males (235.6N), while young females (151.4N) had lower force than old females (153.6N). Young subjects exerted the largest gripping force with D-shape due to large contribution of the index and middle fingers and the smallest with A-shape; however, old subjects exerted the largest with I-shape and the smallest with V-shape due to small contribution of the ring and little fingers. As expected, the middle finger had the largest finger force and the little finger had the smallest. The fraction of contribution of index and ring fingers to grip force differed among age groups. Interestingly, young subjects provided larger index finger force than ring finger force, whereas old subjects showed that larger ring finger forces than index finger force in the griping tasks. In the relationship between performance and subjective comfort, I-shape exerting the largest grip force had less comfort than D-shape producing the second largest grip force. The findings of this study can provide guidelines on designing hand tool handle to obtain better performance as well as users' comfort.

A New PMU (parametric measurement unit) Design with Differential Difference Amplifier (차동 차이 증폭기를 이용한 새로운 파라메터 측정기 (PMU) 설계)

  • An, Kyung-Chan;Kang, Hee-Jin;Park, Chang-Bum;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • This paper describes a new PMU(parametric measurement unit) design technique for automatic test equipment(ATE). Only one DDA(differential difference amplifier) is used to force the test signals to DUT(device under test), while conventional design uses two or more amplifiers to force test signals. Since the proposed technique does not need extra amplifiers in feedback path, the proposed PMU inherently guarantees stable operation. Moreover, to measure the response signals from DUT, proposed technique also adopted only one DDA amplifier as an IA(instrument amplifier), while conventional IA uses 3 amplifiers and several resistors. The DDA adopted two rail-to-rail differential input stages to handle full-range differential signals. Gain enhancement technique is used in folded-cascode type DDA to get open loop gain of 100 dB. Proposed PMU design enables accurate and stable operation with smaller hardware and lower power consumption. This PMU is implemented with 0.18 um CMOS process and supply voltage is 1.8 V. Input ranges for each force mode are 0.25~1.55 V at voltage force and 0.9~0.935 V at current force mode.