• Title/Summary/Keyword: Force feedback device

Search Result 93, Processing Time 0.024 seconds

A Study on the Development of Driving Simulator for Improvement of Unmanned Vehicle Remote Control (무인차량 원격주행제어 신뢰성 향상을 위한 통합 시뮬레이터 구축에 관한 연구)

  • Kang, Tae-Wan;Park, Ki-Hong;Kim, Joon-Won;Kim, Jae-Gwan;Park, Hyun-Chul;Kang, Chang-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.86-94
    • /
    • 2019
  • This paper describes the development of unmanned vehicle remote control system which is configured with steering and accelerating/braking hardware to improve the sense of reality and safety of control. Generally, in these case of the remote control system, a joystick-type device is used for steering and accelerating/braking control of unmanned vehicle in most cases. Other systems have been developing using simple steering wheel, but there is no function of that feedback the feeling of driving situation to users and it mostly doesn't include the accelerating/braking control hardware. The technology of feedback means that a reproducing the feeling of current driving situation through steering and accelerating/braking hardware when driving a vehicle in person. In addition to studying feedback technologies that reduce unfamiliarity in remote control of unmanned vehicles, it is necessary to develop the remote control system with hardware that can improve sense of reality. Therefore, in this study, the reliable remote control system is developed and required system specification is defined for applying force-feedback haptic control technology developed through previous research. The system consists of a steering-wheel module similar to a normal vehicle and an accelerating/braking pedal module with actuators to operate by feedback commands. In addition, the software environment configured by CAN communication to send feedback commands to each modules. To verify the reliability of the remote control system, the force-feedback haptic control algorithms developed through previous research were applied, to assess the behavior of the algorithms in each situation.

Study of 7 Degree of Freedom Desktop Master Arm (7자유도 탁상식 마스터 암의 설계 연구)

  • Choi, Hyeungsik;Lee, Dong-Jun;Ha, Kyung-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.59-65
    • /
    • 2012
  • In this research, a novel mater arm was studied as a teaching device for an underwater revolute robot arm used as a slave arm. The master arm was designed to be a seven-degree-of-freedom (DOF) structure, with a structure similar to that of the slave arm, and to be desktop size to allow it to be worn on a human arm. The master arm with encoders on the joints was used as an input device for teaching a slave robot arm. In addition, small electric magnets were installed at the joints of the master arm to generate the haptic force. A control system was designed to sense excessive force and torque in the joints of the master arm and protect it by controlling the position and velocity of the slave arm through the encoder signal of the master arm.

Motion Analysis and Control of Translation Device Driven by Piezoelectric Actuator (압전형 구동기를 갖는 이동기구의 운동해석 및 제어)

  • 이석구;지원호;이종원
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.49-59
    • /
    • 1992
  • The motion analysis of a translation device driven by a piezoelectric actuator is performed to identify the mechanics of impact drive mechanism and to find the maximum speed waveform. The translation device is modeled as a semidefinite two-degree-of-freedom system. The motion analysis includes effects of friction force between moving mass and contact surface, dynamics of voltage amplifier and piezoelectric elements, and hysteresis of piezoelectric actuator. Base on the model, simulation studies are carried out and then compared with experimental results. It is found that the error between moving distances obtained by analysis and experiment is less than 15% and that the actual motion of moving mass is well predicted by the analytical work, finally, precision positioning experiments are carried out by using a proximity sensor as a feedback sensor. Position control of moving mass is initiated by the maximum speed waveform and finely tuned by the scaled down waveform so that accurate positioning is accomplished within the resolution of the sensor.

  • PDF

반복 제어법을 이용한 정밀 제어

  • 전도영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.461-465
    • /
    • 1996
  • In servo systems such as the computer hard disk, surface mountiong device and robot manipulators, the high precision and high speed are increasingly demanding. In these examples, the repeatable errors exist and the repetitive controller removes these errors effectively by adding signals calculated from the previous cycle errors to the existing feedback controller. The experimental results of the position tracking control and contact force control show that the repetitive control effectively improves the precision of mechanical servo systems.

  • PDF

Vision-Based Haptic Interaction Method for Telemanipulation: Macro and Micro Applications (원격조작을 위한 영상정보 기반의 햅틱인터렉션 방법: 매크로 및 마이크로 시스템 응용)

  • Kim, Jung-Sik;Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1594-1599
    • /
    • 2008
  • Haptic rendering is a process that provides force feedback during interactions between a user and an object. This paper presents a haptic rendering technique for a telemanipulation system of deformable objects using image processing and physically based modeling techniques. The interaction forces between an instrument driven by a haptic device and a deformable object are inferred in real time based on a continuum mechanics model of the object, which consists of a boundary element model and ${\alpha}$ priori knowledge of the object's mechanical properties. Macro- and micro-scale experimental systems, equipped with a telemanipulation system and a commercial haptic display, were developed and tested using silicone (macro-scale) and zebrafish embryos (micro-scale). The experimental results showed the effectiveness of the algorithm in different scales: two experimental systems applied the same algorithm provided haptic feedback regardless of the system scale.

  • PDF

Automation of a Teleoperated Microassembly Desktop Station Supervised by Virtual Reality

  • Antoine Ferreira;Fontaine, Jean-Guy;Shigeoki Hirai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2002
  • We proposed a concept of a desktop micro device factory for visually servoed teleoperated microassembly assisted by a virtual reality (VR) interface. It is composed of two micromanipulators equipped with micro tools operating under a light microscope. First a manipulator, control method for the micro object to follow a planned trajectory in pushing operation is proposed undo. vision based-position control. Then, we present the cooperation control strategy of the micro handling operation under vision-based force control integrating a sensor fusion framework approach. A guiding-system based on virtual micro-world exactly reconstructed from the CAD-CAM databases of the real environment being considered is presented for the imprecisely calibrated micro world. Finally, some experimental results of microassembly tasks performed on millimeter-sized components are provided.

Bilateral control of Master-Slave System with Ideal Response (이상적인 응답 특성을 갖는 Master-Slave System의 Bilateral Control)

  • Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2760-2762
    • /
    • 2000
  • The objective of this paper is to design a force feedback controller for bilateral control of a master-slave manipulator system. In a bilateral control system. the motion of the master device is followed by the save one. while the force applied to the slave is reflected on the master. In this paper, a proposed controller applied to the system. Adding a switching control term to control input. robustness is improved. Also the knowledge of the system dynamics is not needed. The computer simulation results show the performance of the proposed controller.

  • PDF

Bilateral Control of Master-Slave System using Fuzzy Sliding Mode Control (퍼지 슬라이딩 모드 제어를 이용한 Master-Slave System의 Bilateral Control)

  • Seo, Sam-Jun;Seo, Ho-Joon;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2380-2382
    • /
    • 2001
  • The objective of this paper is to design a force feedback controller for bilateral control of a master-slave manipulator system using fuzzy sliding mode control. In a bilateral control system the motion of the master device is followed by slave the one. While the force applied to the slave is reflected on the master. In this paper, a proposed controller applied to the system. Adding a switching control term to the input, robustness is improved. Also the knowledge of the system dynamics is not needed. The computer simulation results show the performance of the proposed fuzzy sliding mode controller.

  • PDF

모바일 기기용 햅틱스를 위한 센서 및 구동기

  • Kim, Sang-Youn
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1683-1687
    • /
    • 2009
  • This paper addresses a haptic actuator which can be applied to mobile devices. For haptic feedback in mobile devices, we have to consider not only stimulating force and frequency but also the size and the power consumption of a haptic module. Thus far, vibration motors have been widely used in mobile devices to provide tactile sensation. The reason is that a vibration motor is small enough to be inserted into a mobile device. This paper addresses vibrotactile actuators and other haptic actuators which can generate a wide variety of tactile sensations.

  • PDF

Active Control of Air-Spring Vibration Isolator (공기스프링 방진대의 능동제어)

  • 송진호;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1605-1617
    • /
    • 1994
  • Air-spring is widely used in vibration isolation to reduce the table vibration. When a disturbance is applied to a table, however, it starts virbrating with a low frequency, but has a large displacement due to the reacting force of air-spring. In this study, to solve the table vibration problem, an active vibration control device based on state feedback control using air-spring and proportional control valves was designed. This device can suppress the displacement of the isolation table within allowable range, even any kind of disturbances are applied to the table. Firstly, theoretical analysis of an air-spring isolator was done. Secondly, characteristics of the isolator was investigated via computer simulation and experiment. Finally, active control of air-spring isolator was tested using optimal(LQG) and fuzzy control algorithms was performed to show the effectiveness of the control schems.