• Title/Summary/Keyword: Force curve

Search Result 649, Processing Time 0.029 seconds

Determination of the Nonlinear Parameters of Stiffnes sand Force Facotr of the Loudspeaker (스피커 지지부 강성과 Force Factor의 비선형 계수 추출)

  • 두세진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.62-67
    • /
    • 1993
  • 진동판 변위에 따라 변화하는 스피커의 비선형 강성과 비선형 force factor를 간단히 함수로 모델링하고 각각의 계수를 구하는 방법을 살펴보았다. 강서의 계수를 구하는데 있어서 질량을 부가하는 기계적인 방법을 사용하여 강성과 force factor 간의 커플링을 배제하도록 하였으며, 공진시 스피커로 입력되는 전압, 전류 파형으로부터 force factor의 함수를 얻어 curve fitting 함으로써 force factor의 계수를 얻을 수 있게 하였다. 실험시 변위의 측정은 밀폐형 스피커의 내부 음압을 측정하여 변위를 간접측정하는 방법을 사용하였다.

  • PDF

Analysis of Occurrence Tendency of Rail Force According to Running the Hanvit 200 Train on Transition Curve Track (한국형 틸팅차량 완화곡선 주행시 궤도작용력 발생경향 분석)

  • Park, Yong-Gul;Choi, Sung-Yong;Kim, Youn-Tae;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.678-686
    • /
    • 2009
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. Therefore, in this study, the dynamic rail force of the tilting (Hanvit 200), high-speed (KTX) and general (Mugunghwa) vehicle caused by driving in transition curve track was measured. And, it compared the tilting response with the other by using the measured rail force data in transition curve track, and then evaluated probability the range of load fluctuation for the variable dynamic vertical and lateral wheel load. As a result, a range of rail force by occurred a change of cant from the high-speed and general vehicle which had fixed bogie structure was distributed throughout small deviation. Otherwise, in case of the tilting train which was consisted of the pendulum bogie structure was distributed wide range about large deviation by changed of cant.

Optimal Design of Steel Box Girders Considering LCC (LCC를 고려한 강박스 거더의 최적설계)

  • 안예준;이현섭;신영석;박장호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.339-346
    • /
    • 2004
  • This paper presents a method to minimize Life-Cycle Cost(LCC) of steel box girders. The LCC function considered in this paper includes initial cost, expected life-cycle maintenance cost and repair cost. A resistance force curve is derived from a condition grade curve of steel girders and optimal design of steel box girders is performed on the basis of derived resistance force curve. Also, in this paper annual costs of various case in LCC are compared and analyzed. It is concluded that the optimal design of steel box girders considering LCC by a presented method will lead to more economical and safer girders than conventional design.

  • PDF

The characteristics of buckling of the CWR with respect to the ballast behaviour (도상 저항력 거동을 고려한 장대레일의 좌굴 특성)

  • Kim Hyun-June;Lee Bang-Woo;Sim Hyun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.82-90
    • /
    • 2003
  • The advance in technology of the CWR in Korea has led the establishment of the CWR on the sharp curve (i.e. less than R=600m). As thermit welding used in the sharp-curved construction site is carried out on the curve track, it is difficult to adjust a curve shape accurately and these difficulties have occurred in a number of cases. Therefore, in this study, the lateral buckling analysis of CWR track was carried out considering the actual ballast resistance force. In addition, the cant and vertical resistance force in ballast was considered in order to predict the initial behaviour of bucking in track under the more accurate method.

  • PDF

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyong-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.893-897
    • /
    • 2006
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected. by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve fitted design spectrum.

  • PDF

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyung-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.88-94
    • /
    • 2007
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve-fitted design spectrum.

The study of wheel unloading change in case of tilting actuation (틸팅차량의 곡선부 틸팅동작 시 윤중감소율 병화에 대한 고찰)

  • Kim Nam-Po;Kim Jung-Seok;Oh Il-Geun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.435-442
    • /
    • 2004
  • Tilting train allow the train to pass curve at higher speed without affecting passenger comfort. As the tilting trains run curve track about 30$\%$ higher than non-tilting trains, the centrifugal force and dynamic force will be higher. Therefore it is very important for tilting train to ensure safety against derailment, and to reduce the lateral track forces by applying light-weight design, optimized suspension design and steering mechanism. The 180 km/h Korean Tilting Train(TTX) which is now developing as a part of the Korean National R & D project, was designed and analytically verified to meet these special requirements. This paper describes the analytic study to verify the safety against derailment, especially on the wheel unloading in case of tilting actuation. The severest curve geometry and curving speed was assumed, the tilting control pattern was also assumed as trapezoidal force function applied to tilting bolster and bogie frame. For the comparison, the operation with the speed of tilting train without tilting actuation was numerically simulated and the operation with the balanced speed without tilting actuation was also numerically simulated. Through the numerical simulation of various operating case, we found that derailment quotients, wheel unloading and Q/P was not affected by tilting actuation and that the bogie of TTX was nicely designed to satisfy the safety against the derailment.

  • PDF

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

Effects of reversing the coiling direction on the force-deflection characteristics of nickel-titanium closed-coil springs

  • Park, Hwan-Hyung;Jung, Suk-Hwan;Yoon, Juil;Jee, Kwang Koo;Han, Jun Hyun;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.49 no.4
    • /
    • pp.214-221
    • /
    • 2019
  • Objective: To investigate the effects of reversing the coiling direction of nickel-titanium closed-coil springs (NiTi-CCSs) on the force-deflection characteristics. Methods: The samples consisted of two commercially available conventional NiTi-CCS groups and two reverse-wound NiTi-CCS groups (Ormco-Conventional vs. Ormco-Reverse; GAC-Conventional vs. GAC-Reverse; n = 20 per group). The reverse-wound NiTi-CCSs were directly made from the corresponding conventional NiTi-CCSs by reversing the coiling direction. Tensile tests were performed for each group in a temperature-controlled acrylic chamber ($37{\pm}1^{\circ}C$). After measuring the force level, the range of the deactivation force plateau (DFP) and the amount of mechanical hysteresis (MH), statistical analyses were performed. Results: The Ormco-Reverse group exhibited a significant shift of the DFP end point toward the origin point (2.3 to 0.6 mm), an increase in the force level (1.2 to 1.3 N) and amount of MH (1.0 to 1.5 N) compared to the Ormco-Conventional group (all p < 0.001), which indicated that force could be constantly maintained until the end of the deactivation curve. In contrast, the GAC-Reverse group exhibited a significant shift of the DFP-end point away from the origin point (0.2 to 3.3 mm), a decrease in the force level (1.1 to 0.9 N) and amount of MH (0.6 to 0.4 N) compared to the GAC-Conventional group (all p < 0.001), which may hinder the maintenance of force until the end of the deactivation curve. Conclusions: The two commercially available NiTi-CCS groups exhibited different patterns of change in the force-deflection characteristics when the coiling direction was reversed.

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.