• 제목/요약/키워드: Force Prediction

검색결과 906건 처리시간 0.029초

진동기반 구조식별을 통한 프리스트레스트 콘크리트 거더의 긴장력 손실 검색 기법 (Prestress-Loss Monitoring Technique for Prestressd Concrete Girders using Vibration-based System Identification)

  • 호득유이;홍동수;김정태
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.123-132
    • /
    • 2010
  • This paper presents a prestress-loss monitoring technique for prestressed concrete (PSC) girder structures that uses a vibration-based system identification method. First, the theoretical backgrounds of the prestress-loss monitoring technique and the system identification technique are presented. Second, vibration tests are performed on a lab-scaled PSC girder for which the modal parameter was measured for several prestress-force cases. A numerical modal analysis is performed by using an initial finite element (FE) model from the geometric, material, and boundary conditions of the lab-scaled PSC girder. Third, a vibration-based system identification is performed to update the FE model by identifying structural parameters since the natural frequency of the FE model became identical to the experimental results. Finally, the feasibility of the prestress-loss monitoring technique is evaluated for the PSC girder model by using the experimentally measured natural frequency and numerically identified natural frequency for several prestress-force cases.

응력적층재의 볼트 압체력 경시변화 (Aging Characteristics of Bolt Pretension of Stress-laminated Timber)

  • 엄창득;이상준;김광모
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권6호
    • /
    • pp.505-511
    • /
    • 2011
  • 본 연구는 응력적층재의 압체력 경시변화에 대한 분석을 위해 수행되었다. 실내 외에 설치한 응력적층재의 압체력은 시간에 따라 감소하였으며, 응력적층재의 재압체 후 압체력 감소의 속도는 현저히 느려졌다. 하지만 응력적층재의 실사용을 위해서는 정확한 압체력의 예측이 필요한 것으로 사료된다. 기존의 압체력 예측 모델을 적용하여 압체력의 경시변화를 예측한 결과와 실제 압체력 변화는 상이한 양상을 나타내었으며, 이에 따라 시간과 외부환경에 따른 응력적층재의 압체력 예측 모델의 개발이 필요할 것으로 사료된다.

Analysis of Kernel Hardness of Korean Wheat Cultivars

  • Hong, Byung-Hee;Park, Chul-Soo
    • 한국작물학회지
    • /
    • 제44권1호
    • /
    • pp.78-85
    • /
    • 1999
  • To investigate kernel hardness, a compression test which is widely used to measure the hardness of individual kernels as a physical testing method was made simultaneously with the measurement of friabilin (15KDa) which is strongly associated with kernel hardness and was recently developed as a biochemical marker for evaluating kernel hardness in 79 Korean wheat varieties and experimental lines. With the scattered diagram based on the principal component analysis from the parameters of the compression test, 79 Korean wheat varieties were classified into three groups based on the principal component analysis. Since conventional methods required large amount of flour samples for analysis of friabilin due to the relatively small amount of friabilin in wheat kernels, those methods had limitations for quality prediction in wheat breeding programs. An extraction of friabilin from the starch of a single kernel through cesium chloride gradient centrifugation was successful in this experiment. Among 79 Korean wheat varieties and experimental lines 50 lines (63.3%) exhibited a friabilin band and 29 lines (36.7%) did not show a friabilin band. In this study, lines that contained high maximum force and the lower ratio of minimum force to maximum force showed the absence of the friabilin band. Identification of friabilin, which is the product of a major gene, could be applied in the screening procedures of kernel hardness. The single kernel analysis system for friabilin was found to be an easy, simple and effective screening method for early generation materials in a wheat breeding program for quality improvement.

  • PDF

역문제에 의한 구조물의 실동하중 해석 (Analysis of Practical Dynamic Force of Structure with Inverse Problem)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

  • Waris, Muhammad Bilal;Ishihara, Takeshi
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.247-268
    • /
    • 2012
  • A finite element model is developed for dynamic response prediction of floating offshore wind turbine systems considering coupling of wind turbine, floater and mooring system. The model employs Morison's equation with Srinivasan's model for hydrodynamic force and a non-hydrostatic model for restoring force. It is observed that for estimation of restoring force of a small floater, simple hydrostatic model underestimates the heave response after the resonance peak, while non-hydrostatic model shows good agreement with experiment. The developed model is used to discuss influence of heave plates and modeling of mooring system on floater response. Heave plates are found to influence heave response by shifting the resonance peak to longer period, while response after resonance is unaffected. The applicability of simplified linear modeling of mooring system is investigated using nonlinear model for Catenary and Tension Legged mooring. The linear model is found to provide good agreement with nonlinear model for Tension Leg mooring while it overestimates the surge response for Catenary mooring system. Floater response characteristics under different wave directions for the two types of mooring system are similar in all six modes but heave, pitch and roll amplitudes is negligible in tension leg due to high restraint. The reduced amplitude shall lead to reduction in wind turbine loads.

절삭력 신호를 이용한 정면 밀링에서 공구 파손량 예측 (Prediction of the Amount of Tool Fracture in Face Milling Using Cutting Force Signal)

  • 김기대;주종남
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.972-979
    • /
    • 2001
  • Tool fracture index(TFI) was developed in order not only to detect tool fracture but also to predict the amount of tool fracture in face milling. TFI is calculated by using peak-to-valley values of cutting force acting on teeth and their ratio between the adjacent teeth. When the tool fractures, a large value of TFI proportional to the amount of tool fracture was obtained periodically and decreased gradually. It was found that TFI is independent of cutter runout and it almost does not vary during transient cutting such as cutting condition change during machining. The threshold of tool fracture can be analytically determined by TFI developed in this paper, because the magnitude of TFI was shown to be dependent on the ratio of the amount of tool fracture to feed per tooth and immersion ratio. It was possible to predict the amount of tool fracture in experiments by using the proposed TFI.

Modeling of self-excited forces during multimode flutter: an experimental study

  • Siedziako, Bartosz;iseth, Ole O
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.293-309
    • /
    • 2018
  • The prediction of multimode flutter relies, to a larger extent than bimodal flutter, on accurate modeling of the self-excited forces since it is challenging to perform experimental validation by using aeroelastic tests for a multimode case. This paper sheds some light on the accuracy of predicted self-excited forces by comparing numerical predictions of self-excited forces with measured forces from wind tunnel tests considering the flutter vibration mode. The critical velocity and the corresponding flutter vibration mode of the Hardanger Bridge are first determined using the classical multimode approach. Then, a section model of the bridge is forced to undergo a motion corresponding to the flutter vibration mode at selected points along the bridge, during which the forces that act upon it are measured. The measured self-excited forces are compared with numerical predictions to assess the uncertainty involved in the modeling. The self-excited lift and pitching moment are captured in an excellent manner by the aerodynamic derivatives. The self-excited drag force is, on the other hand, not well represented since second-order effects dominate. However, the self-excited drag force is very small for the cross-section considered, making its influence on the critical velocity marginal. The self-excited drag force can, however, be of higher importance for other cross-sections.

A Dynamic Adjustment Method of Service Function Chain Resource Configuration

  • Han, Xiaoyang;Meng, Xiangru;Yu, Zhenhua;Zhai, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.2783-2804
    • /
    • 2021
  • In the network function virtualization environment, dynamic changes in network traffic will lead to the dynamic changes of service function chain resource demand, which entails timely dynamic adjustment of service function chain resource configuration. At present, most researches solve this problem through virtual network function migration and link rerouting, and there exist some problems such as long service interruption time, excessive network operation cost and high penalty. This paper proposes a dynamic adjustment method of service function chain resource configuration for the dynamic changes of network traffic. First, a dynamic adjustment request of service function chain is generated according to the prediction of network traffic. Second, a dynamic adjustment strategy of service function chain resource configuration is determined according to substrate network resources. Finally, the resource configuration of a service function chain is pre-adjusted according to the dynamic adjustment strategy. Virtual network functions combination and virtual machine reusing are fully considered in this process. The experimental results show that this method can reduce the influence of service function chain resource configuration dynamic adjustment on quality of service, reduce network operation cost and improve the revenue of service providers.

가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석 (Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.

EPB-TBM performance prediction using statistical and neural intelligence methods

  • Ghodrat Barzegari;Esmaeil Sedghi;Ata Allah Nadiri
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.197-211
    • /
    • 2024
  • This research studies the effect of geotechnical factors on EPB-TBM performance parameters. The modeling was performed using simple and multivariate linear regression methods, artificial neural networks (ANNs), and Sugeno fuzzy logic (SFL) algorithm. In ANN, 80% of the data were randomly allocated to training and 20% to network testing. Meanwhile, in the SFL algorithm, 75% of the data were used for training and 25% for testing. The coefficient of determination (R2) obtained between the observed and estimated values in this model for the thrust force and cutterhead torque was 0.19 and 0.52, respectively. The results showed that the SFL outperformed the other models in predicting the target parameters. In this method, the R2 obtained between observed and predicted values for thrust force and cutterhead torque is 0.73 and 0.63, respectively. The sensitivity analysis results show that the internal friction angle (φ) and standard penetration number (SPT) have the greatest impact on thrust force. Also, earth pressure and overburden thickness have the highest effect on cutterhead torque.