• Title/Summary/Keyword: Force Actuator

Search Result 832, Processing Time 0.026 seconds

Investigation of Spark Discharge in Water as a Source of Mechanical Actuation

  • Taylor, Nathaniel D.;Fridman, Gregory;Fridman, Alexander;Dobrynin, Danil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.258-258
    • /
    • 2014
  • Spark discharge in water generates shockwaves which have been utilized to generate mechanical actuation for potential use in pumping application. Discharge pulses of several microseconds generate shockwaves and vapor bubbles which subsequently displace the water for a period of milliseconds. Through the use of a sealed discharge chamber and metal bellow spring, the fluid motion can be used create an oscillating linear actuator. Continuous actuation of the bellow has been demonstrated through the use of high frequency spark discharge. Discharge in water forms a region of high electric field around the electrode tip which leads to the creation of a thermal plasma channel. This process produces fast thermal expansion, vapor and bubble generation, and a subsequent shockwave in the water which creates physical displacement of the water [1]. Previous work was been conducted to utilize the shockwave effect of spark discharge in water for the inactivation of bacteria, removal of mineral fouling, and the formation of sheet metal [2-4]. Pulses ranging from 25 to 40 kV and 600 to 900 A are generated inside of the chamber and the bellow motion is captured using a slow motion video camera. The maximum displacements measured are from 0.7 to 1.2 mm and show that there is a correlation between discharge energy input to the water and the displacement that is generated. Subsequent oscillations of the bellow are created by the spring force of the bellow and vapor in the chamber. Using microsecond shutter speed ICCD imaging, the development of the discharge bubble and spark can be observed and measured.

  • PDF

An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing (반도체 생산에서 진동 제어를 위한 전자기 에어 스프링)

  • Kim, Hyung-Tae;Kim, Cheol-Ho;Lee, Kang-Won;Lee, Gyu-Seop;Son, Sung-Wan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1128-1138
    • /
    • 2010
  • One of the typical problems in the precise vibration is resonance characteristics at low frequency disturbance due to a heavy mass. An electro-magnetic(EM) air spring is a kind of vibration control unit and active isolator. The EM air spring in this study aims at removing the low frequency resonance for semiconductor manufacturing. The mechanical and electronic parts in the active isolator are designed to operate under a weight of 2.5 tons. The EM spring is floated using air pressure in a pneumatic elastic chamber and actuated by EM levitation force. The actuator consists of a EM coil and a permanent magnetic plate which are installed inside of the chamber. An air mount was constructed for the experiment with a stone surface plate, 4 active air springs, 4 gap sensors, a DSP controller, and a multi-channel power amp. A PD control method and operating logic was applied to the DSP. Simulation using 1/4 model was carried out and compared with the experiments. The time duration and maximum peak at resonance frequency can be reduced sharply by the proposed system. The results show that the active system can avoid the resonance caused by the natural frequency of the passive system.

A study on correlation between frictional coefficients and subjective evaluation while rubbing cosmetic product on skin (화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구)

  • Kwon Young-Ha;Kwon Hyun-Joon;Rang Moon-Jeong;Lee Su-Min
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • A frictional coefficients of in-vivo skin characteristic is the most important factor of the cutaneous mechanical properties ant the method of evaluating skin care in the fields of cosmetics products. In-vivo skin characteristic varies in many different ways depends on what is applied to the skin, loading condition, shape, surface roughness, and material of the probe. In this research, we designed a system which can be measured frictional coefficients of a human skin on real time. It consists of multi-components load-cell, actuator, linear motor and arm fixator. This measurement system was automatically controlled by computer. We measured frictional coefficients between probe an4 skin using this system ant inquired adjectives for subjective evaluation while rubbing cosmetic product on skin. Lastly, we analyzed correlation between two factors by calculating Pearson Correlation Coefficient. As a result, we could know that frictional coefficients varied from 0.17-1.2 according to cosmetic products, normal forte, materials and surface conditions of probe. We also confirmed sensual feelings of cosmetic products have close correlation with frictional coefficients.

  • PDF

Fabrication of Electrostatic Track-Following Microactuator for Hard Disk Drive Using SOI (SOI를 이용한 하드 디스크 드라이브용 정전형 트랙 추적 마이크로 액추에이터의 제작)

  • Kim, Bong-Hwan;Chun, Kuk-Jin;Seong, Woo-Kyeong;Lee, Hyo-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.1-8
    • /
    • 2000
  • We have achieved a high aspect ratio track-following microactuator (TFMA) which is capable of driving 0.3 ${\mu}m$ magnetic head for hard disk drive (HDD). it was fabricated on silicon on insulator (SOI) wafer with 20 ${\mu}m$ trick active silicon and 2 ${\mu}m$ thick thermally grown oxide and piggyback electrostatic principle was used for driving TFMA. The first vibration mode frequency of TFMA was 18.5 kHz which is enough for a recording density of higher than 10 Gb/in$^2$. Its displacement was 1.4 ${\mu}m$ when 15 V dc bias plus 15 V ac sinusoidal driving input was applied and its electrostatic force was 50 N. The fabricated actuator shows 7.51 dB of gain margin and 50.98$^{\circ}$ of phase margin for 2.21 kHz servo-bandwidth.

  • PDF

High-Performance Ionic Polymer-Metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs (나피온/전도성 나노입자 전기방사 웹을 이용한 고성능 이온성 고분자-금속 복합체 구동기의 제조)

  • Jung, Yo-Han;Lee, Jang-Woo;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • To improve the performance of ionic polymer-metal composite (IPMC) actuators, Nafion films sandwiched with Nafion/conducting nanoparticulate electrospun webs were used as polymer electrolytes of IPMC. Multiwalled carbon nanotube (MWNT) and silver were the conducting nanoparticulates and the nanoparticles dispersed in a Nafion solution were electrospun. IPMCs with the Nafion/conducting nanoparticulate electrospun webs displayed improved displacements, response rates, and blocking forces. MWNT was superior to silver in terms of displacement and blocking force, and the webs without the conducting fillers also caused enhanced performances compared with the conventional IPMCs. These improvements were attributed to an elevated electrolyte flux through highly porous interlayers and capacitance induced by well dispersed conducting fillers, and low interfacial resistance between electrolyte and electrodes.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

Design Method of Active Standing-to-Walking Assistive Device for Rehabilitation Therapy (재활치료를 위한 능동형 기립-보행 보조기구 설계 방법)

  • Seong-Jun Kim;Sae-Jin Kim;Yun-Mo Kang;Yu-Sin Jeon;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1315-1323
    • /
    • 2023
  • Rehabilitation assistive devices not only assist the rehabilitation therapy and daily life of the disabled and the elderly, but also assist the labor of their caregivers, so various functions are required to improve their quality of life. In this study, a design method considering its practicality is introduced for an active rehabilitation assistive device that can perform both standing and walking assistance by driving various actuators. For this purpose, the force required to assist standing was calculated using statics with the body segmentation method. Also, the overturning stability of the device was verified for various physical conditions and postures. The actuator in the active rehabilitation assistive device was operated by a patient using a graphical user interface in an embedded computer and a touch panel for easy usage. The detailed design was performed for implementation through the help of 3D-CAD and the finite element analysis, and a prototype was produced. Finally, it was proven that the design goal was satisfied by experimental validation.

A Study for a Near-Field Microwave Microscope Using a Tuning Fork Distance Control System in liquid Environment (튜닝폭 거리조절 센서를 이용한 근접장 마이크로파 현미경의 수중 측정을 위한 연구)

  • Kim, Song-Hui;Yoo, Hyung-Keun;Babajanyan, Arsen;Kim, Jong-Chul;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.345-353
    • /
    • 2007
  • We have obtained a topographical image nondestructively for a Cu thin film in liquid using a near-field scanning microwave microscope (NSMM), its operating frequency was 3.5 to 5.5 GHz. We have kept a distance of 10 nm between tip and sample using a quartz tuning fork shear force feedback system. As an end of tip was attached to one prong of the quartz tuning fork has a length of 2 mm, the only tip of tuning fork was immersed in water tank. A loss cause by evaporation in water tank is regulated with actuator was connected to a supplementary tank. Moreover, using a revise program of LabView, we could increase the accuracy of a measurement in liquid.

Electromagnetic Flapping Shutters for Phone Cameras (폰 카메라용 전자기력 Flapping 셔터)

  • Choi, Hyun-Young;Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1385-1391
    • /
    • 2010
  • In this study, we present small-size, low-power, and high-speed electromagnetic flapping shutters for phone cameras. These shutters are composed of trapezoidal twin blades suspended by H-type torsional springs. The existing electrostatic rolling and flapping shutters need high input voltage, while the existing electromagnetic rotating shutters are too big to be used for phone cameras. To achieve low-power and high-speed angle motion for small-size electromagnetic flapping shutters for camera phones, low-inertia trapezoidal twin blades, each suspended by the low-stiffness H-type torsional springs, are employed. The electromagnetic flapping shutters used in this experimental study have steady-state rotational angles of $48.8{\pm}1.4^{\circ}$ and $64.4{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively, for an input current of 60 mA; the maximum overshoot angles are $80.2{\pm}3.5^{\circ}$ and $90.0{\pm}1.0^{\circ}$ in the magentic fields of 0.15 T and 0.30 T, respectively. The rising/settling times of the shutter while opening are 1.0 ms/20.0 ms, while those while closing are 1.7 ms/10.3 ms. Thus, we experimentally demonstrated that the smallsize (${\sim}8{\times}8{\times}2\;mm^3$), low-power (${\leq}60\;mA$), and high-speed (~1/370 s) electromagnetic flapping shutters are suitable for phone cameras.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF