A Study for a Near-Field Microwave Microscope Using a Tuning Fork Distance Control System in liquid Environment

튜닝폭 거리조절 센서를 이용한 근접장 마이크로파 현미경의 수중 측정을 위한 연구

  • Kim, Song-Hui (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Yoo, Hyung-Keun (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Babajanyan, Arsen (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Jong-Chul (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Kie-Jin (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2007.08.30

Abstract

We have obtained a topographical image nondestructively for a Cu thin film in liquid using a near-field scanning microwave microscope (NSMM), its operating frequency was 3.5 to 5.5 GHz. We have kept a distance of 10 nm between tip and sample using a quartz tuning fork shear force feedback system. As an end of tip was attached to one prong of the quartz tuning fork has a length of 2 mm, the only tip of tuning fork was immersed in water tank. A loss cause by evaporation in water tank is regulated with actuator was connected to a supplementary tank. Moreover, using a revise program of LabView, we could increase the accuracy of a measurement in liquid.

근접장 마이크로파 현미경을 이용하여 수중에서 시료의 표면이미지에 대한 비파괴적 측정에 관한 연구를 하였다. 이때 근접장 마이크로파 현미경은 3.5-5.5 GHz에서 작동되었다. 본 연구에서는 수중에서 시료의 표면특성을 손상 없이 측정하기 위해 강성힘을 이용한 튜닝폭(tuning fork) 거리조절 시스템으로 팁과 시료 사이의 거리를 10 nm로 유지하였다. 더불어, 공기 및 수중에서 튜닝폭의 진동진폭의 변화와 공진주파수의 변화를 측정하여 수중에서 튜닝폭리 반응특성을 저하시키는 원인에 대해 알아보았다. 물 속에 시료가 충분히 잠기고, 동시에 물의 영향을 최소화하기 위해 팁의 길이를 2 mm로 제작하여 튜닝폭의 한 쪽면에 붙였다. 또한 측정과정에서 나타나는 증발현상을 해소하기 위해 엑츄에이터를 이용하여 보충용 수조를 제작하였으며, 보다 정확한 수중측정을 위해 보정프로그램을 응용하였다. 이를 통해, 시료의 공기 및 수중 측정의 가능성을 확인하기 위해 도체시료의 표면특성을 관측하고 비교하였다.

Keywords

References

  1. E. Meyer, H. J. Hug and R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip, Berlin: Springer, (2004)
  2. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge: Cambridge University Press, (1994)
  3. R. Wiesendanger, Scanning Probe Microscopy: Analytical Methods, Berlin: Springer-Verlag, (1998)
  4. D. A. Bonnell, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, New York; Chichester: Wiley-VCH, (2001)
  5. D. A. Bonnell, Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications, Philadelophia: VCH, (1993)
  6. M. Yamashita, H. Shigekawa and R. Morita, Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy, Berlin: Springer, (2004)
  7. D. Sarid, Scanning Force Microscopy: with Applications to Electric, Magnetic, and Atomic Forces, Oxford University Press, (1994)
  8. S. H. Cohen, M. T. Bray and M. L. Lightbody, Atomic Force Microscopy/ Scanning Tunneling Microscopy, New York: Plenum, (1994)
  9. Sergei N. Magonov and Myung-Hwan Whangbo, Surface Analysis with STM and AFM ; Experimental and Theoretical Aspects of Image Analysis, VCH, (1996)
  10. M. Kim, S. Kim, J. Kim, K. Lee, B. Friedman, J. Kim and J. Lee, 'Tip-sample distance control for near-field scanning microwave microscopes,' Rev. Sci. Instrum., Vol. 74, No. 8, pp. 367S, (2003) https://doi.org/10.1063/1.1521548
  11. M. Kim, J. Kim, H. Kim, S. Kim, J. Yang, H. Yoo, S. Kim and K. Lee, 'Nondestructive high spatial resolution imaging with a 60 GHz near-field scanning millimeter-wave microscope,' Rev. Sci. Instrum., Vol. 75, No. 3, pp. 684, (2004) https://doi.org/10.1063/1.1646735
  12. J. Kim, S. Kim, H. Yoo, J. Yang, H. Yoo, K. Yu, S. Kim and K. Lee, 'The study of near-field scanning microwave microscope for the nondestructive detection system,' Journal of the Korean Society for Nondestructive Testing, Vol. 24, No. 5, pp. 508, (2004)
  13. D. N. Davydov, K. B. Shelimov, T. L. Haslett and M. Moskovits, 'A near-field scanning optical microscope with a high Q-factor piezoelectric sensing element,' Appl. Phys. Lett. Vol. 75, pp. 1796, (1999)
  14. A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf and N. F. van Hulst 'Dynamic behavior of tuning fork shear-force feedback,' Appl. Phys. Lett. Vol. 71, pp. 28, (1997)
  15. K. Karrai and R. D. Grober, 'Piezoelectric tip-sample distance control for near field optical microscopes,' Appl. Phys, Lett. Vol. 66, pp. 1842, (1995)
  16. P. J. Moyer and S. B. Kammer, 'High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water,' Appl. Phys. Lett. Vol. 68, pp. 3380, (1996)
  17. W. H. J. Rensen, N. F. van Hulst and S. B. Kammer 'Imaging soft samples in liquid with tuning fork based shear force microscopy,' Appl. Phys. Lett. Vol. 77, pp. 1557, (2000)
  18. M. Koopman, B. I. de Bakker, M. F. Garcia-Parajo and N. F. van Hulst, 'Shear force imaging of soft samples in liquid using a diving bell concept,' Appl. Phys. Lett. Vol. 83, No. 24, pp. 5083, (2003) https://doi.org/10.1063/1.1634385
  19. S. Kim, H. Yoo, K. Lee, B. Friedman, M. A. Gaspar and R. Levicky, 'Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork,' Appl. Phys. Lett. Vol. 86, pp. 153506, (2005) https://doi.org/10.1063/1.1904713
  20. D. M. Pozar, Microwave Engineering, John Wiley & Sons INC., (1998)
  21. R. J. Ormeno, D. C. Morgan, D. M. Broun, S. F. Lee and J. R. Waldram, Rev. Sci. Instrum. 68 2121, (1997)
  22. M. Ohtsu, H. Hori Near-Field Nano/Atom Optics and Technology, Springer (1998)
  23. H. M. Altshuler, Handbook of Microwave Measurements II, Polytechnic Institute of Brooklyn, NY, (1963)
  24. H. Goldstein, Classical Mechanics, Addision-Wesley, (1986)
  25. D. Kajfez and P. Guillon, Dielectric Resonators, Noble publishing Co., Atlanta, (1998)
  26. J. Kim, M. Kim, H. Kim, D. Song, B. Friedman and K. Lee, 'Improving images form a near-field scanning microwave microscope using a hybrid probe,' Appl. Phys. Lett., Vol. 83, pp. 1026, (2003) https://doi.org/10.1063/1.1595134
  27. S. Kim, Y. Yoon, A. Babajanyan, J. Kim, and K. Lee, 'Sodium chloride sensing by using a near-field microwave microprobe,' Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 1, pp. 23, (2007)
  28. http://www.citizen.co.jp/english/crystal/index.html