Browse > Article

A Study for a Near-Field Microwave Microscope Using a Tuning Fork Distance Control System in liquid Environment  

Kim, Song-Hui (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Yoo, Hyung-Keun (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Babajanyan, Arsen (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim, Jong-Chul (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Kie-Jin (Department of Physics and Program of Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Abstract
We have obtained a topographical image nondestructively for a Cu thin film in liquid using a near-field scanning microwave microscope (NSMM), its operating frequency was 3.5 to 5.5 GHz. We have kept a distance of 10 nm between tip and sample using a quartz tuning fork shear force feedback system. As an end of tip was attached to one prong of the quartz tuning fork has a length of 2 mm, the only tip of tuning fork was immersed in water tank. A loss cause by evaporation in water tank is regulated with actuator was connected to a supplementary tank. Moreover, using a revise program of LabView, we could increase the accuracy of a measurement in liquid.
Keywords
Tuning Fork; Shear Force Feedback System; Near-Field Scanning Microwave Microscope (NSMM); Nondestructive; Liquid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Wiesendanger, Scanning Probe Microscopy: Analytical Methods, Berlin: Springer-Verlag, (1998)
2 D. A. Bonnell, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, New York; Chichester: Wiley-VCH, (2001)
3 M. Yamashita, H. Shigekawa and R. Morita, Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy, Berlin: Springer, (2004)
4 W. H. J. Rensen, N. F. van Hulst and S. B. Kammer 'Imaging soft samples in liquid with tuning fork based shear force microscopy,' Appl. Phys. Lett. Vol. 77, pp. 1557, (2000)
5 M. Koopman, B. I. de Bakker, M. F. Garcia-Parajo and N. F. van Hulst, 'Shear force imaging of soft samples in liquid using a diving bell concept,' Appl. Phys. Lett. Vol. 83, No. 24, pp. 5083, (2003)   DOI   ScienceOn
6 S. Kim, H. Yoo, K. Lee, B. Friedman, M. A. Gaspar and R. Levicky, 'Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork,' Appl. Phys. Lett. Vol. 86, pp. 153506, (2005)   DOI   ScienceOn
7 H. Goldstein, Classical Mechanics, Addision-Wesley, (1986)
8 D. Kajfez and P. Guillon, Dielectric Resonators, Noble publishing Co., Atlanta, (1998)
9 M. Kim, S. Kim, J. Kim, K. Lee, B. Friedman, J. Kim and J. Lee, 'Tip-sample distance control for near-field scanning microwave microscopes,' Rev. Sci. Instrum., Vol. 74, No. 8, pp. 367S, (2003)   DOI   ScienceOn
10 M. Ohtsu, H. Hori Near-Field Nano/Atom Optics and Technology, Springer (1998)
11 J. Kim, S. Kim, H. Yoo, J. Yang, H. Yoo, K. Yu, S. Kim and K. Lee, 'The study of near-field scanning microwave microscope for the nondestructive detection system,' Journal of the Korean Society for Nondestructive Testing, Vol. 24, No. 5, pp. 508, (2004)
12 R. J. Ormeno, D. C. Morgan, D. M. Broun, S. F. Lee and J. R. Waldram, Rev. Sci. Instrum. 68 2121, (1997)
13 E. Meyer, H. J. Hug and R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip, Berlin: Springer, (2004)
14 D. Sarid, Scanning Force Microscopy: with Applications to Electric, Magnetic, and Atomic Forces, Oxford University Press, (1994)
15 R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge: Cambridge University Press, (1994)
16 S. Kim, Y. Yoon, A. Babajanyan, J. Kim, and K. Lee, 'Sodium chloride sensing by using a near-field microwave microprobe,' Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 1, pp. 23, (2007)
17 J. Kim, M. Kim, H. Kim, D. Song, B. Friedman and K. Lee, 'Improving images form a near-field scanning microwave microscope using a hybrid probe,' Appl. Phys. Lett., Vol. 83, pp. 1026, (2003)   DOI   ScienceOn
18 M. Kim, J. Kim, H. Kim, S. Kim, J. Yang, H. Yoo, S. Kim and K. Lee, 'Nondestructive high spatial resolution imaging with a 60 GHz near-field scanning millimeter-wave microscope,' Rev. Sci. Instrum., Vol. 75, No. 3, pp. 684, (2004)   DOI   ScienceOn
19 D. A. Bonnell, Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications, Philadelophia: VCH, (1993)
20 K. Karrai and R. D. Grober, 'Piezoelectric tip-sample distance control for near field optical microscopes,' Appl. Phys, Lett. Vol. 66, pp. 1842, (1995)
21 D. N. Davydov, K. B. Shelimov, T. L. Haslett and M. Moskovits, 'A near-field scanning optical microscope with a high Q-factor piezoelectric sensing element,' Appl. Phys. Lett. Vol. 75, pp. 1796, (1999)
22 S. H. Cohen, M. T. Bray and M. L. Lightbody, Atomic Force Microscopy/ Scanning Tunneling Microscopy, New York: Plenum, (1994)
23 P. J. Moyer and S. B. Kammer, 'High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water,' Appl. Phys. Lett. Vol. 68, pp. 3380, (1996)
24 H. M. Altshuler, Handbook of Microwave Measurements II, Polytechnic Institute of Brooklyn, NY, (1963)
25 http://www.citizen.co.jp/english/crystal/index.html
26 A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf and N. F. van Hulst 'Dynamic behavior of tuning fork shear-force feedback,' Appl. Phys. Lett. Vol. 71, pp. 28, (1997)
27 D. M. Pozar, Microwave Engineering, John Wiley & Sons INC., (1998)
28 Sergei N. Magonov and Myung-Hwan Whangbo, Surface Analysis with STM and AFM ; Experimental and Theoretical Aspects of Image Analysis, VCH, (1996)