• Title/Summary/Keyword: Forage Plants

Search Result 324, Processing Time 0.033 seconds

Himalayan dock (Rumex nepalensis): the flip side of obnoxious weed

  • Wangchuk, Kesang
    • Journal of Animal Science and Technology
    • /
    • v.57 no.11
    • /
    • pp.34.1-34.5
    • /
    • 2015
  • Himalayan dock (Rumex nepalensis) was evaluated for forage value and antinutrients under three, five and seven weeks cutting intervals in the temperate environment. Dry matter (DM) content was measured for each cutting interval. Forage quality parameters such as Crude Protein (CP), Acid Detergent fiber (ADF), Neutral Detergent Fiber (NDF), Calcium (Ca) and Phosphorus (P) were analyzed. Plants with seven weeks cutting interval gave higher DM yield. CP and P content were significantly higher for three weeks cutting intervals. Average CP contents were 31.38 %, 30.73 % and 27.32 % and average P content 0.58 %, 0.52 % and 0.51 % for three, five and seven weeks cutting intervals, respectively. Ca content did not differ significantly between cutting intervals. The average Ca content were 0.91 %, 0.90 % and 90 %, for three, five and seven weeks cutting intervals, respectively. Tannin and mimosine contents were not significantly different between cutting intervals. Average tannin contents were 1.32 %, 1.27 % and 1.26 % and mimosine 0.38 %, 0.30 % and 0.28 % for three, five and seven weeks cutting intervals, respectively. The study concluded that R. nepalensis could be a potential source of protein for livestock. The study also suggests seven weeks harvesting interval to provide plants with high dry matter yield, high forage quality and very low levels of anti-nutrients.

Structural Characteristics of Cell Walls of Forage Grasses - Their Nutritional Evaluation for Ruminants - - Review -

  • Iiyama, Kenji;Tuyet Lam, Thi Bach
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.862-879
    • /
    • 2001
  • The walls of all higher plants are organized as a cellulosic, fibrillar phase embedded in a matrix phase composed of non-cellulosic polysaccharides, some proteins and, in most secondary walls, lignin. At the effective utilization of plant biomass, qualitative and quantitative analyses of plant cell walls are essential. Structural features of individual components are being clarified using newly developed equipments and techniques. However, "empirical" procedures to elucidate plant cell walls, which are not due to scientific definition of components, are still applied in some fields. These procedures may give misunderstanding for the effective utilization of plant biomass. In addition, interesting the investigation of wall organization is moving towards not only qualitatively characterisation, but also quantitation of the associations between wall components. These involve polysaccharide-polysaccharide and polysaccharide-lignin cross-links. Investigation of the associations is being done in order to understand the chemical structure, organization and biosynthesis of the cell wall and physiology of the plants. Procedures for qualitative and quantitative analyses based on the definition of cell wall components are reviewed focussing in nutritional elucidation of forage grasses by ruminant microorganisms.

Influence of Sowing Time on Growth , Yield and Nutrient Quality of Forage job`s Tears [ Coix lachryma-jobi L. var. mayeur STAPF ] (청예 사초용 율무의 파종기가 생육특성과 사료성분에 미치는 영향)

  • 안계주;권병선;김찬호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.2
    • /
    • pp.123-126
    • /
    • 1992
  • To determine optimal sowing time of Job's Tears in southern areas of Korea, Job's Tear cv. Seungju local cultivar was grown under three different sowing times. The results obtained are summariz cd as follows:I . Yield components such as plant length, stem diameter and number of leaves etc. were the highest at the sowing time of Apr. 15. 2. Plants sown at Apr. 15 showed the highest fresh and dry matter yield. 3. As plants were grown under later sowing time. they showed higher values in content of crude protein and lower values in contents of crude fiber such as NDF. ADF and cellulose.

  • PDF

Analysis of Aluminum Stress-induced Differentially Expressed Proteins in Alfalfa Roots Using Proteomic Approach

  • Kim, Dong-Hyun;Lee, Joon-Woo;Min, Chang-Woo;Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.137-145
    • /
    • 2022
  • Aluminum (Al) is one of the major factors adversely affects crop growth and productivity in acidic soils. In this study, the effect of Al on plants in soil was investigated by comparing the protein expression profiles of alfalfa roots exposed to Al stress treatment. Two-week-old alfalfa seedlings were exposed to Al stress treatment at pH 4.0. Total protein was extracted from alfalfa root tissue and analyzed by two-dimensional gel electrophoresis combined with MALDI-TOF/TOF mass spectrometry. A total of 45 proteins differentially expressed in Al stress-treated alfalfa root tissues were identified, of which 28 were up-regulated and 17 were down-regulated. Of the differentially expressed proteins, 7 representative proteins were further confirmed for transcript accumulation by RT-PCR analysis. The identified proteins were involved in several functional categories including disease/defense (24%), energy (22%), protein destination (9%), metabolism (7%), transcription (5%), secondary metabolism (4%), and ambiguous classification (29%). The identification of key candidate genes induced by Al in alfalfa roots will be useful to elucidate the molecular mechanisms of Al stress tolerance in alfalfa plants.

Cadmium Tolerance in Alfalfa is Related to the Up-regulation of Iron and Sulfur Transporter Genes along with Phytochelatin Accumulation

  • Lee, Ki-Won;Lee, Sang-Hoon;Song, Yowook;Ji, Hee Jung;Choi, Bo Ram;Lim, Eun A;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.190-195
    • /
    • 2020
  • Cadmium (Cd) toxicity is a serious limitation for agricultural production. In this study, we explored tolerance mechanism associated with Cd toxicity tolerance in alfalfa plants. We used three distinct alfalfa cultivars M. sativa cv. Vernal, M. sativa cv. Zhung Mu, and M. sativa cv. Xing Jiang Daye in this study. Cd showed declined chlorophyll score in Xing Jiang Daye compared with Zhung Mu and Vernal. No significant change observed among the cultivars for root and shoot length. Atomic absorption spectroscopy analysis demonstrated a significant accumulation of Cd, Fe, S and PC in distinct alfalfa cultivars. However, Zhung Mu and Xing Jiang Daye declined Cd accumulation in root, where Fe, S and PC incremented only in Zhung Mu. It suggests that excess Cd in Zhung Mu possibly inhibited in root by the increased accumulation of Fe, S and PC. This was further confirmed by the response of Fe (MsIRT1) and S transporters (MsSULTR1;2 and MsSULTR1;3), and MsPCS1 genes associated with Fe, S and PC availability and translocation in roots and shoots. It suggests that specially the transcript signal inducing the responses to adjust Cd especially in Zhung Mu. This finding provides the essential background for further molecular breeding program for forage crops.

Investigation of forage value and usability of soybean varieties for livestock

  • Park, Myoung-Ryoul;Seo, Min-Jung;Yun, Hong-Tae;Park, Chang-Hwan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.220-220
    • /
    • 2017
  • Soybean (Glycine max (L.) Merill) is a very outstanding material crop with high protein and oil contents. We conducted this study to evaluate forage value and usability of soybean varieties as livestock forage. Three soybeans cultivars, OT93-26, Geomjeongsaeol, and Pungwon, were evaluated for forage use in this study, and Kwangpyeongok and Yeongwoo were used as check forage corn and rice, respectively. The whole soybean plants were harvested at the R5 (beginning seed development)- and R6 (full seed)-reproductive stages for analyzing forage usability and quality. Days to harvesting of the R5 stage-OT93-26 was the shortest among the tested crops while that of Yeongwoo was 122 days. The fresh and dry matter yields of all 3 soybeans were greater at R6 stage than at R5. Crude protein of the soybean cultivars harvested had a higher compared to the rice and corn regardless of the harvesting stage. Contents of crude fiber, neutral detergent fiber and acid detergent fiber of Yeongwoo had the lowest whereas Pungwon harvested at R5 were the highest. Among the soybeans, digestible dry matter, dry matter intake, and relative feed value of R6-harvested Geomjeongsaeol and Pungwon were high more compared to those at the R5-harvested, but in case of OT93-26 those at R6 stage were inversely measured rather than those at R5 stage. In conclusion, soybean can be used as s forage with high nutritive value for livestock. Moreover, Geomjeongsaeol can be applied to develop new forage soybean varieties with high nutritive value, and R6 stage is the optimum harvesting stage in yield and quality of the tested soybeans more than R5.

  • PDF

Sulfur Deficiency Effects on Nitrate Uptake and Assimilatory Enzyme Activities in Rape Plants (유채에서 황 결핍이 질산염의 흡수 및 동화관련 효소활력에 미치는 영향)

  • Li, Lu-Shen;Jin, Yu-Lan;Lee, Bok-Rye;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • Rape plants, especially forage type, are known as one of high S-demanding plants. Their productivity and quality have often limited under S-deficient condition. To investigate the effect of S-deficiency on N uptake and its assimilation, $NO_3^-$ absorption, nitrate reducatse (NR) and glutamine synthetase (GS) activity in leaf and root tissues as affected by different S-supplied level was determined. $NO_3^-$ uptake was not significant between control and S-deficient treated plants, while significantly depressed in S-deprived plants for the early 8 h. NR activity decreased as S-availability decreased, especially in young and middle leaves, representing more than 35% of decrease in S-deficient and 70% in S-deprived plants when compared with control. In roots, a significant decrease (-29%) in NR was observed only in S-deprived plants. Relatively higher GS activity was found in young leaves for three all treatments. As a whole leaf tissue, S-limited conditions resulted in a reduction of GS activity. In root which showed the lowest activity, a significant decrease (-30%) was observed only in S-deprived plants.

Effect of Rice Straw Compost on Arsenic Uptake and Accumulation in Rice (Oryza sativa L.) (벼의 비소흡수와 축적에 미치는 볏짚퇴비의 효과)

  • Jung, Ha-il;Kim, Myung-Sook;Jeon, Sangho;Lee, Tae-Gu;Chae, Mi-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.108-113
    • /
    • 2022
  • Arsenic (As) uptake and accumulation from agricultural soil to rice vary depending on the soil environmental conditions such as soil pH, redox potential, clay content, and organic matter (OM) content. Therefore, these factors are important in predicting changes in the uptake and accumulation of As in rice plants. Here, we studied the chemical properties of As-contaminated and/or rice straw compost (RSC)-treated soils, the growth responses of RSC-applied rice plants under As-contaminated soils, the changes in As content of soil, and the relationship between As uptake and accumulation from the RSC-treated soils to the rice organs under As-contaminated soils. Rice plants were cultivated in 30 mg kg-1 As-contaminated soils under three RSC treatments: 0 (control), 12, and 24 Mg ha-1. No significant differences were indicated in the chemical properties of pre-experimental (before transplanting rice seedling) soils, with the exception of EC, OM, and available P2O5. As the treatment of RSC under 30 mg kg-1 As-contaminated soils increased, EC, OM, and available P2O5 increased proportionally in soil. Increased soil RSC under As-contaminated soils increased shoot dry weight of rice plants at harvesting stage. As content in roots increased proportionally with RSC content, whereas As content in shoots decreased under As-contaminated soil at all stages of rice plants. Nevertheless, As accumulation were significantly decreased in both roots and shoots of RSC-treated rice plants than those in the plants treated without RSC. These results indicate that the use of RSC can mitigate As phytotoxicity and reduce As accumulation in rice plants under As-contaminated soils. Therefore, RSC can potentially be applied to As-contaminated soil for safe crop and forage rice production.

Esterase Isozyme Banding Pattern in Wild Legume Plants (야생 콩과식물의 Esterase Isozyme Banding Pattern에 관한 연구)

  • 이성규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.1
    • /
    • pp.71-76
    • /
    • 1992
  • Starch gel electrophoresis was used to examine the banding pattern of Esterase isozyme in the leaf, root-nodule and seedling of four wild legume species, Trifolim repense, Glycine soja, Phaseolus nipponensis and Vigna uexillata. The number of band, enzyme activity and migrating rate of esterase isozyme varies depending on the species and tissues of legume plants. The isozyme banding pattern in the cotyledon and radicle of T. repense showed same pattern, however, the number of band were varible among the cotyledon of G. soja, P. nipponensis and V. vexzllata, respectively. Est-1 in the leaf of G. soja, V, vexillata. root-nodule of G. soja and seedling of V. vexillata expreesed the highest enzyme activity. The Est-1 showed the rapidest migrating rate among the isozymes.

  • PDF

Identification of DNA polymorphisms in the field bean ( Glycine soza S. and Z. ) using RAPD markers (RAPD 표지인자를 이용한 돌콩 DNA 다형현상 분석)

  • 이성규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.2
    • /
    • pp.143-150
    • /
    • 1998
  • Six field bean (GI-vcine soza S and Z ) plants were examined for their genetic polymorphisms and intraspecific variations using randomly amplified polymorphic DNA(RAPD) markers. In RAPD analysis of 5 random primers (Rp-1, Rp2, Rp-3, Rp-4, Rp-5), 30 of total 155 bands obtained kom 5 primers were polymorphic and sizes of polymirphic band ranged between 0.5 and 3.0 kb. Number of bands amplyfied per primer was varied from 2 to 11 and average number was 6.0. Genetic variation of intraspecies in the samples of six region was ranged behveen 11 to 25 percent, and genetic similarity among intraspecies was ranged from 0.69 to 0.78. In pairwise genetic similarity test of six field bean plants, Mun and Hoj showed highest coefficient of genetic similarity as 0.67, whereas Sin and Hoj was lowest as 0.45. According to the genetic similarity, the level of intraspecific variation is higher than that of regional distance in GI-vcine soza.

  • PDF