Browse > Article
http://dx.doi.org/10.5333/KGFS.2022.42.2.108

Effect of Rice Straw Compost on Arsenic Uptake and Accumulation in Rice (Oryza sativa L.)  

Jung, Ha-il (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Myung-Sook (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration)
Jeon, Sangho (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Tae-Gu (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration)
Chae, Mi-Jin (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
Publication Information
Journal of The Korean Society of Grassland and Forage Science / v.42, no.2, 2022 , pp. 108-113 More about this Journal
Abstract
Arsenic (As) uptake and accumulation from agricultural soil to rice vary depending on the soil environmental conditions such as soil pH, redox potential, clay content, and organic matter (OM) content. Therefore, these factors are important in predicting changes in the uptake and accumulation of As in rice plants. Here, we studied the chemical properties of As-contaminated and/or rice straw compost (RSC)-treated soils, the growth responses of RSC-applied rice plants under As-contaminated soils, the changes in As content of soil, and the relationship between As uptake and accumulation from the RSC-treated soils to the rice organs under As-contaminated soils. Rice plants were cultivated in 30 mg kg-1 As-contaminated soils under three RSC treatments: 0 (control), 12, and 24 Mg ha-1. No significant differences were indicated in the chemical properties of pre-experimental (before transplanting rice seedling) soils, with the exception of EC, OM, and available P2O5. As the treatment of RSC under 30 mg kg-1 As-contaminated soils increased, EC, OM, and available P2O5 increased proportionally in soil. Increased soil RSC under As-contaminated soils increased shoot dry weight of rice plants at harvesting stage. As content in roots increased proportionally with RSC content, whereas As content in shoots decreased under As-contaminated soil at all stages of rice plants. Nevertheless, As accumulation were significantly decreased in both roots and shoots of RSC-treated rice plants than those in the plants treated without RSC. These results indicate that the use of RSC can mitigate As phytotoxicity and reduce As accumulation in rice plants under As-contaminated soils. Therefore, RSC can potentially be applied to As-contaminated soil for safe crop and forage rice production.
Keywords
Arsenic; As accumulation; Growth response; Rice; Rice straw compost;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kumarathilaka, P., Seneweera, S., Meharg, A. and Bundschuh, J. 2018. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment. 642:485-496.   DOI
2 Finnegan, P.M. and Chen, W. 2012. Arsenic toxicity: The effects on plant metabolism. Frontiers in Physiology. 3:182.   DOI
3 Jung, H.I., Lee, J., Chae, M.J., Kong, M.S., Lee, C.H., Kang, S.S. and Kim, Y.H. 2017. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Environmental Monitoring and Assessment. 189:638.   DOI
4 Meharg, A.A. and Rahman, M.M. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science and Technology. 37(2):229-234.   DOI
5 RDA. 2012. Analysis standard for research in agricultural science and technology. RDA. Suwon. Korea.
6 Verma, G., Srivastava, D., Narayan, S., Shirke, P.A. and Chakrabarty, D. 2020. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicology Environmental Safety. 201:110735.   DOI
7 Siddiqui, M.H., Alamri, S., Khan, M.N., Corpas, F.J., Al-Amri, A.A., Alsubaie, Q.D., Ali, H.M., Kalaji, H.M. and Ahmad, P. 2020. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. Journal of Hazardous Materials. 398:122882.   DOI
8 NAS. 2019. Fertilizer recommendation for crop production (4th ed.). National Institute of Agricultural Science. RDA. Wanju. Korea.
9 Norton, G.J., Duan, G., Dasgupta, T., Islam, M.R., Lei, M., Zhu, Y., Deacon, C.M., Moran, A.C., Islam, S., Zhao, F.J., Stroud, J.L., McGrath, S.P., Feldmann, J., Price, A.H. and Meharg, A.A. 2009. Environmental and genetic control of arsenic accumulation and speciation in rice grain: Comparing a range of common cultivars crown in contaminated sites across Bangladesh, China, and India. Environmental Science and Technology. 43(21):8381-8386.   DOI
10 Roychowdhury, T., Uchino, T., Tokunaga, H. and Ando, M. 2002. Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food and Chemical Toxicology. 40(11):1611-1621.   DOI
11 Ye, X.X., Sun, B. and Yin, Y.L. 2012. Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet. Chemosphere. 87(4):384-389.   DOI
12 Dradrach, A., Karczewska, A. and Szopka, K. 2020. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils-Findings from the field and greenhouse studies. Chemosphere. 248:126045.   DOI
13 Chen, Y., Moore, K.L., Miller, A.J., McGrath, S.P., Ma, J.F. and Zhao, F.J. 2015. The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany. 66(13):3717-3724.   DOI
14 Kaya, C., Ashraf, M., Alyemeni, M.N., Corpas, F.J. and Ahmad, P. 2020. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials. 399:123020.   DOI
15 Zhu, Y.G., Williams, P.N. and Meharg, A.A. 2008. Exposure to inorganic arsenic from rice: A global health issue? Environmental Pollution. 154(2):169-171.   DOI
16 Ahmed, Z.U., Panaullah, G.M., Gauch, H., McCouch, S.R., Tyagi, W., Kabir, M.S. and Duxbury, J.M. 2011. Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant and Soil. 338(1-2):367-382.   DOI
17 Antoniadis, V., Shaheen, S.M., Levozou, E., Shahid, M., Niazi, N.K., Vithanage, M., Ok, Y.S., Bolan, N. and Rinklebe, J. 2019. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?-A review. Environment International. 127:819-847.   DOI
18 Bhattacharya, P., Samal, A.C., Majumdar, J. and Santra, S.C. 2010. Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy and Water Environment. 8(1):63-70.   DOI
19 Cappuyns, V., Herreweghe, S.V., Swennen, R., Ottenburgs, R. and Deckers, J. 2002. Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Science of the Total Environment. 295:217-240.   DOI
20 Han, K.W., Cho, J.Y. and You, Y.S. 1997. Several factors on growth of radish and absorption and translocation of chromium. Korean Journal of Soil Science and Fertilizer. 30(4):370-376.
21 Jung, H.I., Chae, M.J., Lee, T.J., Yoon, J.H., Kim, M.S., Jeon, S. and Kim, H.S. 2021. Soil Nutrient and Rice (Oryza sativa L.) Growth Characteristics under Different Arsenic Contamination Levels. Korean Journal of Soil Science and Fertilizer. 54(4):601-609.   DOI