• Title/Summary/Keyword: Foot Sensor

Search Result 139, Processing Time 0.03 seconds

A Study on Walking Stabilization and Path Tracking of Biped Robot Using RFID (이족 보행 로봇의 보행 안정화 및 RFID를 이용한 경로 추종에 관한 연구)

  • Park, Jong-Han;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • In order to apply a biped robot in real world, the robot requires a robust walking and a function of localization, path planning and navigation. Recently, localization and path planning using RFID of mobile robot has been studying. However, when the biped robot walks, it has unstability and tends to leave the path. In the paper we propose a method of walking stabilization using FSR(Force Sensing Resistor), Gyro and accelerometer for the real biped robot. Also a path tracking algorithm using RFID sensor attached in robot's foot is proposed based on localization of the robot. The proposed algorithm is verified from walking experiments using real biped robot on uneven terrain and path tracking experiments on the RFID environments.

Correlation between Weight Bearing Ratio and Functional Level for Development of Pressure Sensor Biofeedback in Stroke Patient

  • Moon, Young;Kim, Mi-Sun;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.315-324
    • /
    • 2014
  • PURPOSE: This study aimed to determine the correlation of weight bearing ability at the affected side with balance and gait abilities for the development of pressure biofeedback based equipment to stroke patients. METHODS: This study included 35 patients with stroke patient. The tests were conducted to determine the weight bearing ratio while pushing a step forward the affected side, static balance ability using the total length of COP(Center of pressure), sway velocity of COP, COP velocity at the X and Y axis. Functional reaching test (FRT), berg balance scale (BBS) were used to assess the dynamic balance ability and timed up and go test (TUG), 10m walk test (10mWT) were used assess the gait ability respectively. In order to determine the correlation between measured variables, bivariate correlation analysis was conducted. RESULTS: A significant correlation of the weight bearing ratio were shown with COP total length and velocity(r=-.34), Y-axis velocity(r=-.39), FRT(r=.42), BBS(r=.54), TUG (r=-.39), and 10m walking test (r=-.42). CONCLUSION: This study result showed that as patients with stroke had more weight bearing ratio at the affected side, not only their static and dynamic balance abilities increased more but also functional gait ability improved more. These results mean that, to improve stroke patients' static, dynamic balance ability and gait ability, weight bearing training with the affected side foot placed one step forward necessary for gaits are important.

A Study on Community Mapping for ICT-Based Livestock Infectious Disease Response (ICT 기반 가축 감염병 대응을 위한 커뮤니티 매핑 연구)

  • Koo, Jee Hee;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.247-257
    • /
    • 2020
  • Livestock epidemics, such as foot and mouth disease, are causing enormous economic losses due to their strong infectious power. Early detection of infectious diseases in livestock is very important, but it is difficult to diagnose early in individual farms, and there are frequent cases of transmission through inter-farm movement such as veterinarians and feeding vehicles. In this study, we studied the technology that enables rapid diagnosis without veterinarian farm visits and prevents further spread by automatically monitoring the body temperature of livestock using ubiquitous-based information and communication technology in the early stage of onset and sending it in real time. We have presented a technique for systematically managing livestock epidemics at the farm level, regional level, and national level by using the community mapping technique by using the remote medical treatment system linked to the automatically collected information. In this process, community mapping items for each step and stakeholders were derived for crowd sourcing based spatial information technology.

Comparing the Whole Body Impedance of the Young and the Elderly using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • The bioelectrical impedance (BI) for the young and the elderly was measured using bioelectrical impedance spectroscopy (BIS). First, while applying a current of $600{\mu}A$ to the foot and hand, BI was measured at 50 frequencies ranging from 5 to 1000 kHz. The BI for young subjects was considerably lower than that for old subjects since young subjects have more lean mass (hydration). The prediction marker was 0.74 for young subjects and 0.78 for old subjects. Second, a Cole-Cole diagram was obtained for young subjects and old subjects, indicating the different characteristic frequencies. At 50 kHz, the average phase angle was $7.8^{\circ}$ for young subjects whereas that was $6.1^{\circ}$ for old subjects. Third, BIVA was analyzed for young subjects and old subjects. The vector length was 210.89 [${\Omega}/m$] for young subjects and 326.12 [${\Omega}/m$] for old subjects. At 50 kHz, the resistance (R/H) and the reactance ($X_C/H$) divided by height were 208.94 [${\Omega}/m$] and 28.68 [${\Omega}/m$] for young subject, and 324.33 [${\Omega}/m$] and 34.09 [${\Omega}/m$] for old subjects.

Effect of Changes in Knee Angle and Weight-Shifting of the Sole on the Lower Extremity Muscle Activity during the Bridge Exercise

  • Cho, Hye-Jung;Lee, Min-Woo;Bak, Se-Young;Kim, Hyeong-Dong;Shin, Unchul
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2022
  • PURPOSE: This study examined the effect of changes in the knee angle and weight shifting of the sole on the activity of the lower extremity muscles during bridge exercise. METHODS: The subjects of this study included 20 healthy adult women (mean age 29.8 ± 4.32). The subjects performed the bridge exercise under three weight-shifting conditions general bridge (GB), hindfoot press bridge (HPB), and fore-foot bridge (FPB) and at two knee angles (90° and 60°). During the bridge exercise, the activity of the quadriceps femoris (rectus femoris, vastus medialis oblique, and vastus lateralis) and biceps femoris muscles were measured using an electromyography sensor. RESULTS: In the quadriceps femoris, the muscle activity of HPB and FPB was significantly higher than that of the GB at knee angles of 90° and 60° (p < .05). In the biceps femoris, the muscle activity increased significantly in the order of GB < HPB < FPB, and the knee angle increased significantly at 60° rather than at 90° (p < .05). There was no significant difference according to the knee angle in all muscles except for the biceps femoris. CONCLUSION: These findings suggest that the weight-shifting bridge of sole bridge exercise was more effective in increasing the activation of the lower extremity muscles than the GB.

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.

Development of Wireless Ambulatory Measurement System based on Inertial Sensors for Gait Analysis and its Application for Diagnosis on Elderly People with Diabetes Mellitus (관성센서 기반의 무선보행측정시스템 개발 및 노인 당뇨 환자 보행 진단에의 응용)

  • Jung, Ji-Yong;Yang, Yoon-Seok;Won, Yong-Gwan;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.38-46
    • /
    • 2011
  • 3D motion analysis system which is currently widely used for walking analysis has limitations due to both necessity of wide space for many cameras for measurement, high cost, and complicated preparation procedure, which results in low accessability in use and application for clinical diagnosis. To resolve this problem, we developed 3-dimensional wireless ambulatory measurement system based on inertial sensor which can be easily applicable for clinical diagnosis for lower extremity deformity and developed system was evaluated by applying for 10 elderly people with diabetes mellitus. Developed system was composed of wireless ambulatory measurement module that consists of inertial measurement unit (IMU) which measures the gait characteristics, microcontroller which collects and precesses the inertial data, bluetooth device which transfers the measured data to PC and Window's application for storing and processing and analyzing received data. This system will utilize not only to measure lower extremity (foot) problem conveniently in clinical medicine but also to analyze 3D motion of human in other areas as sports science, rehabilitation.

Gait Phases Detection from EMG and FSR Signals in Walkingamong Children (근전도와 저항 센서를 이용한 보행 단계 감지)

  • Jang, Eun-Hye;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo;Chun, Byung-Tae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.207-214
    • /
    • 2010
  • The aim of this study was to investigate upper and lower limb muscle activity using EMG(electromyogram) sensors while walking and identify normal gait pattern using FSR(force sensing resistor) sensor. Fifteen college students participated in this study and their EMG and FSR signal were measured during stopping and walking trials. EMG signals from upper(pectoralis major and trapezius) and lower limbs(rectus femoris, biceps femoris, vastus medialis, vastus lateralis, semimembranosus, semitendinosus, soleus, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis) were obtained using the surface electrodes. FSR measured pressures on 8 areas of the sole of the foot during walking. EMG results showed that all muscle activities except for vastus lateralis and semimembranosus during walking had higher amplitudes than stopping. Additionally, muscle activities associated with stance and swing phase during walking were identified. Results on FSR showed that stance and swing phases were detected by FSR signals during a gait cycle. Eight gait phases-initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing, and terminal swing- were classified.

  • PDF

The Scientific Analysis of Aged' Shoe for Health Promotion (노인 건강증진용 신발의 운동과학적 효과분석)

  • Jin, Young-Wan;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1336-1345
    • /
    • 2011
  • The purpose of this study was to analyze and compare the effects of exercise science of shoes for Aged' health promotion. Kinematic and kinetic data were collected using cinematography and the Zebris system (Zebris Emed Sensor Platform, GR-DVL9800) to analyze pressure of foot and ground reaction force. Subjects recruited were 20 healthy elderly men. They walked at 1.36m/sec velocity wearing type A (domestic), type B (foreign) and walking shoes (A company). One-way ANOVA was used to analyze statistics. The results were as following: no significant differences were observed in gait variables among the three groups (p<0.05). There was a significant difference in max pronation angle of heels examined among the three groups (p<0.05). There were no significant differences in kinetic variables (ground reaction force and max pressure) among the three groups (p<0.05). A physiology study was performed to analyze the effects of walking with shoes with silver added to them on percent body fat, resting metabolic rate and energy expenditure. Sixty adults males were recruited from the public health center. They were divided into four groups. C: control group (n=20), EY: elderly Y group (n=20), and EO: elderly O group (n=20). The results of this study were as follows: percent body fat was decreased following each exercise period, however, not all the groups showed a significant difference. The change of resting metabolic rate was significantly increased in HI (high intensity) and LI (low intensity) periods in the C and EY groups. However, there was no significant difference in the EO group. The mean energy expenditure during and after exercise were significantly lowered in all periods compared to the control group.