• Title/Summary/Keyword: Foot Pressure Distribution

Search Result 138, Processing Time 0.029 seconds

Relationship of Foot Type to Callus Location in Healthy Subjects

  • Jung, Do-Young;Kim, Moon-Hwan;Chang, In-Su
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.64-70
    • /
    • 2006
  • The purpose of this study was to determine whether a relationship existed between foot type and the location of plantar callus in healthy subjects. Twenty-five healthy subjects with plantar callus were recruited for this study. Foot deformities were classified according to the operational definitions as 1) a compensated forefoot varus, 2) an uncompensated forefoot varus or forefoot valgus, or 3) a compensated rearfoot varus. The location of plantar callus was divided into two regions. Fourteen of the 19 feet with compensated forefoot varus and six of the 9 feet showed plantar callus at the second, third or fourth metatarsal head. Five of the 6 feet with uncompensated forefoot varus and twenty of the 16 feet with forefoot valgus showed plantar callus at the first or fifth metatarsal head. A significant relationship was found between foot type and location of callus (p<.01). The results support the hypothesis that certain foot types are associated with characteristic patterns of pressure distribution and callus formation. We believe diabetic patients with insensitive feet and with the types of foot deformity should be fit with foot orthoses and footwears that accommodate their respective deformity in a position as near to the subtalar joint as possible with the goal of preventing plantar ulceration.

  • PDF

Experimental Study on the Performance Characteristics of Geothermal DTH Hammer with Foot Valve (풋 밸브가 적용된 지열 천공 DTH 해머의 성능 특성에 대한 실험적 연구)

  • Cho, Min Jae;Sim, Jung-Bo;Kim, Young Won
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • Drilling equipment is an essential part used in various fields such as construction, mining, etc., and it has drawn increasing attention in recent years. The drilling method is generally divided into three types. There are a top hammer method that strikes on the ground, a DTH (Down-The-Hole) method that directly strikes a bit in an underground area, and a rotary method that drills by using rotational force. Among them, the DTH method is most commonly used because it enables efficient drilling compared to other drilling methods. In the conventional DTH hammer, the valve between the piston and the bit is opened and closed using a face to face method. In order to improve the power of the DTH hammer, a DTH hammer with foot valve which is capable of instantaneous opening and closing is used in the drilling field. In this study, we designed a lab-scale DTH hammer with the foot valve, and manufactured an evaluation device for the experiment of the DTH hammer. In addition, we analyzed the performance of the DTH hammer adopted with foot valve according to the pressure range of 3-10 bar. As a result, the internal pressure distribution in the DTH hammer was experimentally analyzed, and then, the movement of the piston according to the pressure was predicted. We believe that this study provides the useful results to explain the performance characteristics of the DTH hammer with the foot valve.

The Plantar Pressure Comparison between the Curved Rear Balance Shoes and Normal Shoes (유선형 후방 밸런스 신발과 일반 신발의 족저압 비교)

  • Kim, Youn-Joung;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • The purpose of study was to compare plantar pressure during walking wearing the curved rear balance and normal shoes. Twelve university students(height: $177.2{\pm}4.6cm$, weight: $68.4{\pm}5.8kg$, age: $26.2{\pm}1.6yrs.$) who have no known musculoskeletal disorders were recruited as the subjects. Plantar foot pressures were evaluated using the Tekscan's pressure measurement systems while subjects walked upright position wearing the curved rear balance and normal shoes in random order at a speed of 1.3 m/s. The contacting dimension, the mean plantar pressure, and the peak plantar pressure were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p<.05). As a result, the curved rear balanced shoes showed as large as 38 up to 50 % of area at the rear side of feet than the normal shoes when measuring the contact area with upright position. In the distribution of average pressure, the curved rear balanced shoes displayed fairly low pressure compared to other normal shoes in general except for one area, which is M2, and especially, the measured pressures at the both rear (M1) and middle (M5) side of feet were low and statically significant. The contact area of the curved rear balanced shoes when walking was significantly larger at the rear (M1) and fore (M6, M7) side of feet. When considering pressure distribution at walking, low pressure was detected at the rear side of feet with the curved rear balanced shoes and at the fore side of feet for other normal shoes. The results showed that the contacting dimension of the curved rear balance shoes that acts between shoes and feet was higher than the corresponding value for the normal shoes in general; therefore it would reduce the pressure to the feet by allowing the each sole of the foot on the ground evenly.

Analysis of Plantar Foot Pressure During Golf Swing Motion of Pro & Amateur Golfer (프로와 아마추어 골퍼의 골프스윙 동작시 족저압력 비교 분석)

  • Lee, Joong-Sook;Lee, Dong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.41-55
    • /
    • 2005
  • In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Regional change of force acting, in address, is evenly distributed on both feet. In back swing top, 76% on right foot, 75% on left foot as impact, and 86% on left foot as finish. As regional force acting, in address, pros get high marks on rare and inside of right foot and rare and outside for amateurs. In back swing top, it is higher as fore and inside of left foot, pros as rare part of right foot and amateurs as forefoot. In impact, it is higher for pros and amateurs in outside and rare part of left foot and fore and inside of right foot. In finish, for both pros and amateurs, it is higher for outside and rare parts of left foot. 2. For each club, forces are evenly distributed on both feet in address. In back swing top, the shorter a club is, the higher impact on right foot and the higher finish distribution on left foot. For all the clubs used, in each region, pros get higher on rare and inside of right foot and as amateurs on rare and outside of left foot in address. In back swing top, for all clubs, pros get higher on rare and outside of right foot as fore and outside for amateurs. In impact acting, for all clubs, rare and outside of left foot get higher. In finish, force concentrates on rarefoot. 3. On both feet force, right foot forces of amateurs is higher than those of pros in back swing top. In impact and finish, pros get higher on left foot.

The Study of Plantar Foot Pressure Distribution during Obstacle Crossing with Different Height in Normal Young Adults (보행 시 장애물 높이에 따른 정상 성인의 족저압 분포 연구)

  • Han, Jin-Tae;Lee, Myung-Hee;Kim, Kyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different obstacle heights on the plantar foot pressure during obstacle crossing. Sixteen healthy adults who had no musculoskeletal disorders were instructed to perform unobstructed level walking and to step over obstacles corto 10cm, 20cm, 30cm. Plantar foot forces and pressures were recorded by the Footmat system(Tekscan, Boston, USA) during level and obstacle walking with barefoot. Plantar foot surface was defined as seven regions for pressure measurement; two toe regions, three forefoot regions, one midfoot region, one heel region. One-way ANOVA was used to compare each region data of foot according to various heights. The results indicated that there are significant differences on peak pressure and maximal forces regarding each region at stance phase. As height of obstacle became high, the pathway of COP had a tendency to be short and abducted. Plantar pressure of foot could be changed by obstacle height and these findings demonstrated that obstacle with different height have an effect on structure and function of the foot.

Influence of Different Slope Analysis during Pitching Wedge Swing on Plantar Pressure Distribution Pattern (경사면에서 골프스윙 동작시 족저압력 분석)

  • Son, Dong-Ju;Yang, Jeong-Ok;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.297-309
    • /
    • 2009
  • The study analyzed the mechanism of plantar foot pressure distribution during pitching wedge swinging on a flat, an up hill lie and a down hill lie to provide the fundamental information regarding biomechanical motion data by using plantar foot pressure measuring instrument. In the results, time factor spanning according to slope differences, plantar foot pressure factor and swing motion on the slope could have negative effect on the coiling of lower limbs during back swing, as well as the blocking of the lower limbs to minimize the dispersion of the weight and the release of the lower limbs after the impact during the down swing process. Moreover, since slope is one of many external factors affecting swing motion, address motion on an up hill lie limits the lower limbs movement, therefore, a relatively narrow stance is better on a down hill lie. It is estimated that a relatively wide stance would be better in order to limit the bigger activation of the lower limbs. Not only for the address motion but also during the down swing on an up hill lie it is concluded that the weight should be on the left foot in order to keep the body balance.

A study on gait characteristics for the elderly footwear design (노인의 신발 디자인을 위한 보행 특성에 관한 연구)

  • 정석길;김준교;김병수
    • Archives of design research
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2001
  • The general characteristics of the elder gait are to show a tendency that stride length and cycle decrease compared with those of adult, then walk velocity decreases. Despite differences by age in design of elder footwear, the study on characteristics of elderly gait is few. This study aims to compare pressure distributions of elderly foot with those of young students by using EMED. The ground contact time on foot was longer than that of university students in Result. Elderly males and females have 1.12 times and 1.20 times greater maximum force over the whole areas on the foot during walking than that of younger males and females, respectively. The elderly have long ground contact time at the middle foot. The guidelines which should be considered in designing shoes for the elderly are proposed. The results can be applied to design of the elder footwear on the basis of ergonomics.

  • PDF

Plantar-Pressure Distributions on Hallux Valgus Patients (엄지발가락외반증 환자의 발바닥압력분포)

  • Yang, G.T.;Kim, Y.H.;Park, Si-Bog;Lim, S.H.;Chang, Y.H.;Mun, M.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.241-244
    • /
    • 1997
  • 23 hallux valgus patients were evaluated with clinical examinations and plantar pressure distribution measurements. A masking method for detailed plantar pressure distribution analyses was suggested. With higher grade of hallux valgus, pressure, contact length & area, and impulse on metartasus were significantly increased. Localized pressure concentration is very important in foot diseases and appropriate plantar pressure distributions should be considered on any shoe design.

  • PDF

A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running (달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

The Change of Plantar Pressure According to the Height of Heel Lifts in Obese and Non-Obese and Non-Obese Adults

  • Kim, Tae-Ho;Gong, Won-Tae
    • Physical Therapy Korea
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • The purpose of this study was to assess the peak plantar pressure distribution under foot areas according to the height of heel lifts in obese adults and non-obese adults during walking. Thirty-one participants volunteered for this experiment. The average body mass index (BMI) value of the fourteen subjects in the obese group was $26.5{\pm}1.4kg/m^2$ (from 25.1 to 29.3 $kg/m^2$), and of seventeen subjects in the non-obese group was $20.0{\pm}1.1kg/m^2$ (from 18.7 to 22.7 $kg/m^2$). The subject ambulated while walking in the sneakers, walking with 2 cm heel lifts, and walking with 4 cm heel lifts in the shoes. We measured the peak plantar pressure under the hallux, 1st, 2nd, 3~4th, and 5th metatarsal head (MTH), mi foot, and heel using F-scan system. The obese group had significantly higher peak plantar pressure under all foot areas than the non-obese group regardless of the height of heel lifts (p<.05). The peak plantar pressure under the 5th MTH and heel was significantly decreased, also the peak plantar pressure under hallux, 1st, and 2nd MTH was significantly increased according to the height of heel lifts in the obese group and non-obese group (p<.05), We proposed that individuals with heel lifts in shoes should be careful, as there is high plantar pressure under the forefoot.

  • PDF