• Title/Summary/Keyword: Follower force

Search Result 119, Processing Time 0.026 seconds

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.

The Effect of an Internal Damping on the Stability of Machine Tool Engineers Subjected to Dry Friction Force (내부감쇠가 건성마찰력을 받는 공작기계의 안정성에 미치는 효과)

  • 고준빈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper discussed on the effect of an internal damping on the stability of an elastic material subjected to dry friction force. Dry friction forces act tangentially at the contact surface between a moving belt and elastic material. The elastic material on a belt moving is modeled for simplicity into a cantilevered beam subjected to distributed follower force. In the analysis, the discretized equations derived according to finite element method are used. The impulse response of the beam are studied by the mode superposition method to observe the growth rate of the motion. It is found that the internal damping in cantilevered beam subjected to distributed follower force may act destabilizing.

Experimental Study on the Stability of the Cantilever Beam with Tip Mass Subjected to a Follower Force (종동력을 받는 첨단질량을 갖는 외말보의 안전성에 관한 실험적 연구)

  • 노광춘;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.183-187
    • /
    • 1986
  • An experimental method to give a tangential follower force to a cantilever beam having a concentrated tip mass by the magnetic force of the electromagnet has been described. The dynamic behaviour of the beam under this nonconservative load has been analysed by experimentally as well as by theoretically. The theoretical and experimental results on the natural frequencies and the critical force of the systems are in good agreement with each other.

Influence of a Moving Mass on Dynamic Behavior of Simple Beam Subjected to Uniformly Distributed Follower Forces (이동질량과 등분포종동력이 단순보의 진동에 미치는 영향)

  • Yu, Jin-Seok;Yoon, Han-Ik;Choi, Chang-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.701-705
    • /
    • 2000
  • On the dynamic behavior of a simple beam subjected to an uniformly distributed tangential follower force, the influences of the velocities and magnitudes of a moving mass have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving mass represented by the time functions. The uniformly distributed tangential follower force is considered in its critical value of a simple beam, and four values of velocity is also chosen. Their coupling effects on the deflections of a simple beam are inspected too. When a moving mass moves after middle zone of a simple beam at the low velocities, its deflection is increased by the coupling of an uniformly distributed tangential follower force and moving mass.

  • PDF

Chaotic response of a double pendulum subjected to follower force (종동력을 받는 진동계의 케이오틱 거동 연구)

  • 이재영;장안배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.295-300
    • /
    • 1996
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

Effects of damping on the linear stability of a free-free beam subjected to follower and transversal forces

  • Kavianipour, O.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.709-724
    • /
    • 2009
  • In this paper a free-free uniform beam with damping effects subjected to follower and transversal forces at its end is considered as a model for a space structure. The effect of damping on the stability of the system is first investigated and the effects of the follower and transversal forces on the vibration of the beam are shown next. Proportional damping model is used in this work, hence, the effects of both internal (material) and external (viscous fluid) damping on the system are noted. In order to derive the frequency of the system, the Ritz method has been used. The mode shapes of the system must therefore be extracted. The Newmark method is utilized in the study of the system vibration. The results show that an increase in the follower and transversal forces leads to an increase of the vibrational motion of the beam which is not desirable.

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

Spring Position and Stiffness Effect on the Dynamic Stability of Elastically Restrained Cantilevered Beams under a Follower Force (종동력을 받는 탄성지지된 외팔보의 동적 안정성에 미치는 스프링위치와 상수의 영향)

  • 류봉조;권경우;명태식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1496-1502
    • /
    • 1994
  • The influences of spring position and spring stiffness on the critical force of a cantilevered beam subjected to a follower force are investigated. The spring attatched to the beam is assumed to be a translational one and can be located at arbitrary positions of the beam as it has not been assumed so far. The effects of transeverse shear deformation and rotary intertia of the beam are also included in this analysis. The charateristic equation for the system is derived and a finite element model of the beam using local coordinates is formulated through extended Hamilton's principle. It is found that when the spring is located at position less than that of 0.5L, the flutter type instability only exists. It is shown that the spring position approaches to the free end of the beam from its midpoint, instability type is changed from flutter to divergence through the jump phenomina according to the increase of spring stiffness.

Optimum Cam Profile Design and Experimental Verification on an OHC Type Cam-valve System (OHC형 캠-밸브 기구의 최적 캠 형상설계 및 실험적 검증)

  • 김성훈;김원경;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2049-2058
    • /
    • 1992
  • In this work, a 6 degree of freedom lumped mass model is constructed for an OHC-type cam valve train analysis, and the model is verified experimentally. Using the verified model, an optimum cam profile is designed to minimize the maximum contact force between cam and follower under the constraints such as cam lift and cam event angle. The designed cam was carefully machined and tested experimentally. As operating the designed cam shaft on the test rig, the valve motion was precisely measured with laser displacement meter and the contact force was indirectly monitored by measuring strain at a certain point of the finger follower. Judging from the model simulation and experiment results, the maximum contact force can be reduced as much as more than 16.7 percent under maintaining the original valve flow area by adopting the optimum cam profile.

Study on the Stability of Cantilevered Pipe Conveying Fluid Subjected to Distributed Follower Force (분포종동력을 받는 외팔 송수관의 안정성에 관한 연구)

  • Kong, Chang-Duk;Park, Yo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.27-34
    • /
    • 2005
  • The paper discussed on the stability of cantilevered pipe conveying fluid subjected to distributed follower force. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical flow velocity as a function of the distributed follower force for the various mass ratio is determined. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration The critical mass ratios, at which the transference of the eigenvalue branches related to flutter take place, are definitely determined. Also, the effect of damping on the stability of the system is considered.