• 제목/요약/키워드: Follower Force

검색결과 119건 처리시간 0.025초

고속회전 원형 톱의 불안정 현상 (Unstable Phenomenon of High-Speed Rotating Circular Saws)

  • 임경화
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1210-1217
    • /
    • 1999
  • This paper presents schematic process of identifying the principal cause to make the vibration problem of rotating circular saws. In the tandem pencil slat saw lines, feeding of cedar blocks is often stopped because excessive motro current is required in a saw motor. These events are called "kick-offs" in technical reports. Research on saw behavior at kick-offs is required to understand are reduce the frequency and severity of kick-offs events. This research aims at finding out the principal cause of kick-offs, and evloving design improvements for high cutting performance with fewer and less severe kick-offs. Measurements of critical speed, cutting force, cutting temeprature and dynamic displacements are carried out to observe the instability mechanism and also to obtain saw design parameters for the numerical analyses. And the numerical analyses involving FEM and multiple scale method are utilized to show the possibility of the principal cause.pal cause.

  • PDF

A Strategy for Moving Mass Systems from One Point to Another without Inducing Residual Vibration

  • Yoon, Byung-Ok;Karnopp, Bruce-H.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 추계학술대회논문집; 반도아카데미, 26 Nov. 1993
    • /
    • pp.29-34
    • /
    • 1993
  • In many circumstances, it is desired to move a mass from one position to another without inducing any vibration in the mass being moved. Two such problems are considered here: the motion of a pendulum initiated by the specified motion of its support. In each case, it is desired that the system start at rest and come to rest in the second position. A simple strategy for the specified motion is given here. The method is motivated by engine cam-follower design. The force required to move the system in question is determined as well as the maximum value of the force required (and the times at which these forces take place) is determined.

  • PDF

이동질량을 가진 유체유동 외팔 파이프극 동특성 (Dynamic Characteristics of Cantilever Pipe Conveying Fluid with the Moving Masses)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.550-556
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid. the moving mass upon it and an attacked tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe haute been studied on the dynamic behavior of a cantilever pipe by numerical method. As the velocity of the moving mass increases, the deflection of cantilever pipe conveying fluid is decreased. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. The deflection of the cantilever pipe conveying fluid is increased by moving masses. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced due to the deflection of pipe tilth the effect of moving mass and gravity.

잔류진동 없이 질량계를 한 위치에서 다른 위치로 옮기기 위한 전략 (A Strategy for Moving mass Systems from One Point to Another without Inducing Residual Vibration)

  • ;윤병옥
    • 소음진동
    • /
    • 제4권1호
    • /
    • pp.83-88
    • /
    • 1994
  • 물체를 한 위치에서 타 위치로 잔류 진동없이 움직이려 하는 경우가 많다. 본 논문에서는 한 질량이 다른 질량과 스프링에 의해 움직이는 경우와 진자가 지지 점의 운동에 의해 움직이는 경우에 관해 논하였다. 각 경우에 있어서 시스템은 정지 상태에서 출발한 후 최종위치에서 다시 멈추는 것으로 간주하였다. 본 논문에 주어진 운동방식에 대한 기본 전략은 엔진 캠-구동자 형태의 설계시 단순화된 모형으로부터 도출되었다. 이와 같은 형태로 시스템을 움직이는데 필요한 힘과 최대힘 및 그때 소요되는 시간이 계산되었다.

  • PDF

유체유동을 갖는 외팔 파이프의 동특성 및 진동수에 미치는 설계인자의 영향 (Influence of Design Parameters on Dynamic Behavior and Frequencies of Cantilever ripe Conveying Fluid)

  • 윤한익;손인수;박일주
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1815-1823
    • /
    • 2003
  • The vibrational system of this study consists of a cantilever pipe conveying fluid, the moving masses upon it and having an attached tip mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior and the natural frequency of a cantilever pipe by numerical method. The deflection of the cantilever pipe conveying fluid is increased due to the tip mass and rotary Inertia. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced by energy variation when the moving mass fall from the cantilever pipe. As the moving mass increase, the frequency of the cantilever pipe conveying fluid is increased. The rotary inertia of the tip mass influences much on the higher frequencies and vibration mode.

이동질량을 가진 유체유동 회전 외팔 파이프의 동특성 (Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving mass)

  • 손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bemoulli hew theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever, pipe is more sensitive to the effect of a angular velocity.

  • PDF

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

유한요소법에 의한 단순화된 미사일 몸체 모델의 안정성에 관한 연구 (A study onthe stability of a missile body ina simplified model by finite element method)

  • 박영필;김찬수
    • 대한기계학회논문집
    • /
    • 제5권4호
    • /
    • pp.293-302
    • /
    • 1981
  • In this paper, the stability of a flexible missle, idealized as a free-free beam, is evaluated by using the finite element method. For the study, heavy machinery part is modeled as a concentrated mass and the thrust, which is controlled by a feedback sensor located at a predetermined position, is considered as a constant follower force. The aerodynamic forces, the structural damping, the cross sectional variation servo lag effect are neglected in this study. With unconstrained variational principle, the finite element method is applied to the nondimensionalized beam eqution. The matrix eigenvalue equation is obtained and the eigenvalues are calculated by a computer for the stability analysis. The stability is evaluated by the inspection of the eigenvalues are calculated by a computer for the stabilith analysis. The stabilith is evaluated by the inspection of the eigenvalues of the problem. For the study, the behaviors of the eigenvalues at various thrusts and the effects of the magnitudes and positions of the concentrated mass and directional control constant are analyzed.

변단면 Beck 기둥의 동적안정 해석 (Dynamic Stability Analysis of Tapered Beck Columns)

  • 이병구;이태은;강희종;김권식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of tapered columns with clamped one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck columns is derived using the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter, mass ratio and spring stiffness.

  • PDF

비데오 데크 메카니즘의 로딩블럭 해석 및 설계 (Design and Analysis of Loading Block of VCR Deck Mechanism)

  • 박태원;김광배
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.502-511
    • /
    • 1994
  • A video deck mechanism is composed of various cams, links, and gears, and it requires precise movement. So kinematic motion between parts should be considered to get desired movement depending on the timing chart which defines movement of each part to get desired mode. Also dynamic effects should be considered to get right tape tension and to estimate motor force required to obtain accurate motion. The design process of the deck mechanism of VCR is explained briefly. The loading block of the deck mechanism is divided into a tape translational group and a brake control group. Each group is modeled for kinematic and dynamic analysis. Finally, two groups are combined together to analyze the loading block of the deck mechanism. Results are used to understand and modify an existing design.