• Title/Summary/Keyword: Focus measure operator

Search Result 16, Processing Time 0.022 seconds

Mid frequency - DCT focus measure operator for the robust autofocus (노이즈에 둔감한 밴드패스 이산 코사인 초점 값 연산자)

  • Lee, Sang-Yong;Park, Sang-Soo;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.8-14
    • /
    • 2006
  • This paper proposed noise insensitive 4*4 mid frequency-OCT (MF-DCT) focus measure operator. Proposed operator enhanced low power 8*8 MDCT operator to have 4*4 rotationally same form for Gaussian noise. MF-DCT operator acting like band-pass filter suppresses both low-frequency signal useless for focus measure and high-frequency signal affected by impulsive noise. Also it is proved to be linear because it uses the energy of band-pass filtered signal as focus measure. Experimental result shows its superiority by comparing AUM with traditional operators.

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

3D Surface Reconstruction by Combining Focus Measures through Genetic Algorithm (유전 알고리즘 기반의 초점 측도 조합을 이용한 3차원 표면 재구성 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • For the reconstruction of three-dimensional (3D) shape of microscopic objects through shape from focus (SFF) methods, usually a single focus measure operator is employed. However, it is difficult to compute accurate depth map using a single focus measure due to different textures, light conditions and arbitrary object surfaces. Moreover, real images with diverse types of illuminations and contrasts lead to the erroneous depth map estimation through a single focus measure. In order to get better focus measurements and depth map, we have combined focus measure operators by using genetic algorithm. The resultant focus measure is obtained by weighted sum of the output of various focus measure operators. Optimal weights are obtained using genetic algorithm. Finally, depth map is obtained from the refined focus volume. The performance of the developed method is then evaluated by using both the synthetic and real world image sequences. The experimental results show that the proposed method is more effective in computing accurate depth maps as compared to the existing SFF methods.

3D Shape Recovery from Image Focus using Gaussian Process Regression (가우시안 프로세스 회귀분석을 이용한 영상초점으로부터의 3차원 형상 재구성)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • The accuracy of Shape From Focus (SFF) technique depends on the quality of the focus measurements which are computed through a focus measure operator. In this paper, we introduce a new approach to estimate 3D shape of an object based on Gaussian process regression. First, initial depth is estimated by applying a conventional focus measure on image sequence and maximizing it in the optical direction. In second step, input feature vectors consisting of eginvalues are computed from 3D neighborhood around the initial depth. Finally, by utilizing these features, a latent function is developed through Gaussian process regression to estimate accurate depth. The proposed approach takes advantages of the multivariate statistical features and covariance function. The proposed method is tested by using image sequences of various objects. Experimental results demonstrate the efficacy of the proposed scheme.

FUSESHARP: A MULTI-IMAGE FOCUS FUSION METHOD USING DISCRETE WAVELET TRANSFORM AND UNSHARP MASKING

  • GARGI TRIVEDI;RAJESH SANGHAVI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.1115-1128
    • /
    • 2023
  • In this paper, a novel hybrid method for multi-focus image fusion is proposed. The method combines the advantages of wavelet transform-based methods and focus-measure-based methods to achieve an improved fusion result. The input images are first decomposed into different frequency sub-bands using the discrete wavelet transform (DWT). The focus measure of each sub-band is then calculated using the Laplacian of Gaussian (LoG) operator, and the sub-band with the highest focus measure is selected as the focused sub-band. The focused sub-band is sharpened using an unsharp masking filter to preserve the details in the focused part of the image.Finally, the sharpened focused sub-bands from all input images are fused using the maximum intensity fusion method to preserve the important information from all focus images. The proposed method has been evaluated using standard multi focus image fusion datasets and has shown promising results compared to existing methods.

A New Focus Measure Method Based on Mathematical Morphology for 3D Shape Recovery (3차원 형상 복원을 위한 수학적 모폴로지 기반의 초점 측도 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Shape from focus (SFF) is a technique used to reconstruct 3D shape of objects from a sequence of images obtained at different focus settings of the lens. In this paper, a new shape from focus method for 3D reconstruction of microscopic objects is described, which is based on gradient operator in Mathematical Morphology. Conventionally, in SFF methods, a single focus measure is used for measuring the focus quality. Due to the complex shape and texture of microscopic objects, single measure based operators are not sufficient, so we propose morphological operators with multi-structuring elements for computing the focus values. Finally, an optimal focus measure is obtained by combining the response of all focus measures. The experimental results showed that the proposed algorithm has provided more accurate depth maps than the existing methods in terms of three-dimensional shape recovery.

A Study on the Camera Calibration for Precision Measurement (정밀측정을 위한 카메라 보정에 관한 연구)

  • 김준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.52-55
    • /
    • 1996
  • Though the increment of using computer vision system in modern industry, there are lots of difficulties to measure precisely because of measurement error distortion phenomenon. Between these reasons, the distortion of edge is dominant reason which is occured by the blurred image. The blurred image is happened when camera can not discriminate its precise focus. To correct and generalize distortion phenomenon is imprrtant. Thus we must fix the discrimination criteria which is collected by image recognition of precise focus. The edge of image means discontinuous point of intensity, and the component of edge is discribed as high frequency component at special domain specturm of image. The good condition of focus means there are much high frequency energy in image. The method of discribing high frequency energy is gradient operater which determines the condition of focus.

  • PDF

The Impact of Children's Understanding of Fractions on Problem Solving (분수의 하위개념 이해가 문제해결에 미치는 영향)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.48 no.3
    • /
    • pp.235-263
    • /
    • 2009
  • The purpose of the study was to investigate the influence of children's understanding of fractions in mathematics problem solving. Kieren has claimed that the concept of fractions is not a single construct, but consists of several interrelated subconstructs(i.e., part-whole, ratio, operator, quotient and measure). Later on, in the early 1980s, Behr et al. built on Kieren's conceptualization and suggested a theoretical model linking the five subconstructs of fractions to the operations of fractions, fraction equivalence and problem solving. In the present study we utilized this theoretical model as a reference to investigate children's understanding of fractions. The case study has been conducted with 6 children consisted of 4th to 5th graders to detect how they understand factions, and how their understanding influence problem solving of subconstructs, operations of fractions and equivalence. Children's understanding of fractions was categorized into "part-whole", "ratio", "operator", "quotient", "measure" and "result of operations". Most children solved the problems based on their conceptual structure of fractions. However, we could not find the particular relationships between children's understanding of fractions and fraction operations or fraction equivalence, while children's understanding of fractions significantly influences their solutions to the problems of five subconstructs of fractions. We suggested that the focus of teaching should be on the concept of fractions and the meaning of each operations of fractions rather than computational algorithm of fractions.

  • PDF

Enhanced Auto-focus algorithm detecting target object with multi-window and fuzzy reasoning for the mobile phone (목적물 인식 및 자동 선택이 가능한 모바일 폰 용 자동초점 알고리즘)

  • Lee, Sang-Yong;Oh, Seung-Hoon;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.12-19
    • /
    • 2007
  • This paper proposes the enhanced auto-focus algorithm detecting several objects and selecting the target object. Proposed algorithm first detects some objects distributed in the image using focus measure operator and multi-window and then selects the target object through fuzzy reasoning with three fuzzy membership functions. Implementation can be simple because it only needs image sensor instead of infrared or ultrasonic equipment. Experimental result shows that the proposed algorithm can improve the quality of image by focusing to the target object.

Error Analysis of the Image Measurement System (영상 측정 시스템의 오차 분석)

  • 김준희;유은이;사승윤;김광래;유봉환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.490-495
    • /
    • 1996
  • Though the increment of using computer vision system in modern industry, there are lots of difficulties to measure precisely because of measurement error distortion phenomenon. Among these reasons, the distortion of edge is dominant reason which is occurred by the blurred image. The blurred image is happened when camera can not discriminate its precise focus. To calibrate and generalize distortion phenomenon is important. Thus, we must fix the discrimination criteria which is collected by image recognition of precise focus. Also, radial distortion causes an inward or outward displacement of a given image point from its ideal location. This type of distortion is mainly caused by flawed radial curvature curve of the elements. Thus, we were analyzed the distortion in terms of the changed with lens magnification.

  • PDF