• Title/Summary/Keyword: Foam glass

Search Result 132, Processing Time 0.023 seconds

A Study on Fire Hazards in Multiple Compartments with Lightweight Partition Walls (경량칸막이 벽체를 통한 다중구획공간에서의 화재위험성에 관한 연구)

  • Park, Sang-Min;Choi, Su-Gil;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.14-21
    • /
    • 2020
  • This paper presents the study of a fire risk to the backside of two miniatures of ISO 9705 2/5 using a lightweight partition for indoor space division and reproduction of the ISO 9705 test. An SGP partition, stud partition, glass wool panel, urethane foam panel, sandwich panel, and glass partition were selected as the test specimens, which are frequently used in construction. According to the ISO 9705 test standard, stabilization was achieved using a measuring device that recorded data before the ignition of a burner and continued recording for 120 s thereafter. After ignition was achieved, the power was increased to 300 kW for 600 s and then reduced to 100 kW for 600 s. The specimens were subsequently observed for 180 s, and the fire risk to the backside and the fire pattern of the wall unit were analyzed. Owing to the amount of heat generated by the ignition source, the maximum temperature of the backside was observed to be 67.7 ℃ for the SGP partition, 55.1 ℃ for the stud partition, 52.4 ℃ for the glass wool panel, 727.4 ℃ for the sandwich panel, 561 ℃ for the urethane foam panel, and 630.5 ℃ for the glass partition. In the cases of the sandwich and urethane foam panels, the explosion of flammable gas occurred by virtue of fusion of the interior materials. The reinforced glass was fractured owing to the temperature difference between the heat- and nonheat-responsive parts. Ultimately, the fire risk to the nearby section room was deemed to be high.

Microwave Absorbing Properties of Fiber Reinforced Composites with Sandwitch Structure (샌드위치 구조형 섬유강화 복합재료의 전파흡수특성)

  • Kim, Sang-Yeong;Kim, Sang-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.442-446
    • /
    • 2002
  • Design of microwave absorbers using high frequency properties of fiber reinforced composites are investigated. Two kinds of composite materials (glass and carbon) are used and their complex permittivity and permeability are measured by transmission/reflection technique using network analyzer. Low dielectric constant and nearly zero dielectric loss are determined in glass fiber composite. However, carbon fiber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect (폴리우레탄 폼의 비선형 압축거동을 모사하기 위한 밀도 영향이 고려된 수정 Gurson 모델의 제안)

  • Lee, Jeong-Ho;Park, Seong-Bo;Kim, Seul-Kee;Bang, Chang-Seon;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • Polyurethane Foam(PUF), a outstanding thermal insulation material, is used for various structures as being composed with other materials. These days, PUF composed with glass fiber, Reinforced PUF(R-PUF), is used for a insulation system of LNG Carrier and performs function of not only the thermal insulation but also a structural member for compressive loads like a sloshing load. As PUF is a porous material made by mixing and foaming, mechanical properties depend on volume fraction of voids which is a dominant parameter on density. Thus, In this study, density is considered as the effect parameter on mechanical properties of Polyurethane Foam, and mechanical behavior for compression of the material is described by using modified Gurson damage model.

An Experimental Study on the Warehouse Mock-up Fire Test (창고 모델 실물화재 특성에 대한 실험적 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • This study is analyze the damage of warehouse fire accident be made through the fire characteristic database of combustibles and real scale fire test of warehouse mock-up. Combustibles fire tests are carried out for database using RCT (Room Corner Tester) to predict fire growth the goods. A mockup ($3m{\times}3m{\times}2.4m$) of clothes warehouse was built and real scale fire test by LSC (Large Scale Calorimeter) base on the fire characteristic DB. The mock-up of clothes warehouse is made of two type sandwich panels (Glass wool, EPS foam sandwich panel). As a mock-up test result, test 1 (Glass wool sandwich panel) and test 2 (EPS foam sandwich panel) indicating fire growth such as 5 MW, 11 MW of maximum HRR (Heat Release Rate).

Change of Glass Transition Temperature of PETG Containing Gas (가스를 포함하는 고분자 재료(PETG)의 유리전이온도 변화)

  • Cha, Seong-Un;Yun, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.824-829
    • /
    • 2000
  • The industries use polymer materials for many purposes because they have many merits. But these materials' costs take up too much proportion in overall cost of products that use these materials as their major material. So it is very economical for polymer industries to reduce these costs. Microcellular foaming process appeared in 1980's to solve this problem and it proved to be quite successful. This process uses inert gases such as CO2, N2. As these gases are dissolved into polymer matrices. many properties are changed. Glass transition temperature is one of these properties. DSC, DMA are devices that measures this temperature, but these are not sufficient to measure the temperature of polymer containing gas. In this paper, we devised a new tester that uses magnetism. We used this device to acquire data of the change of glass transition temperature and made Cha-Yoon model that can predict the change of glass transition temperature. Using this model, the change of this temperature can be estimated as a function of weight gain of gas. Cha-Yoon model proved that Chow's model is inappropriate to predict the change of glass transition temperature of polymer matrices containing gas.

Production Process of Foamed Glass by Compressive Shaping (가압성형 방법에 의한 발포유리의 제조공정)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.239-246
    • /
    • 2013
  • Principle of foamed glass manufacturing process first starts with putting vitreous material powder into a mold. After the foaming calcination, foamed body should be annealed after separation from the mold. For this reason, existing manufacturing process could not be a continuous type process. In this study, in order to develop a continuous production process of foamed glass, the possibility of new foam glass manufacturing process was investigated by foaming calcination of the compact body obtained from compression-molding of vitreous raw materials in stead of using a mold. Through the experimental results of the foaming calcination of the compact body with adding various foaming agents such as $Na_2CO_3$, $CaCO_3$ and petroleum coke, into hydrated soda-lime vitreous raw materials, it was shown that developing a continuous process without using any molds for manufacturing foamed glass would be possible.

A Study on the Toxicity Analysis of Combustion Gases of Architectural Surface Materials and Architectural Adhesives (건축용 외장재와 접착제 연소가스의 독성분석에 관한 연구)

  • Kim, Won-Jong;Park, Young-Ju;Lee, Hae-Pyeong;Lim, Suk-Hwan;Kim, Jung-In
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This study was carried out, using toxicity test apparatus, to analyze toxic gases of heat insulation material and adhesives of composite panels used for the architectural surface material when a fire occurs. The findings of this study show that CO, $CO_2$, HCOH, $CH_2CHCN$ and $NO_x$ were detected from styrofoam, reinforced styrofoam, polyurethane foam and glass fiber, but in the case of the polyurethane foam, HCl and HCN were detected as well. All the architectural adhesives released CO, $CO_2$ and $NO_x$, but HCHO was only detected from the adhesives for styrofoam, wood, tile, windows and doors; $CH_2CHCN$ was only from those for wood and stone; $C_6H_5OH$ was only from those for wood. The toxicity index was also measured for architectural surface material and adhesives. Polyurethane foam showed the highest index, 11.7, and glass fiber was followed as 6.8. Reinforced styrofoam showed 5.7 and styrofoam revealed the least 4.9. In the case of architectural adhesives, the highest ranking was those for stone 7.4, windows and doors 6.1, wood 5.3, tile 3.8, and styrofoam 3.7 were followed, respectively.

Effect of Halogen-phosphours Flame Retardant Content on Properties of Rigid Polyurethane Foam (인-할로겐계 난연제가 경질폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Chang Bum;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.77-81
    • /
    • 2013
  • In this study, the effect of halogen-phosphorus flame retardant on the flame retardancy and the mechanical properties of the rigid polyurethane foam (PUF) were studied. The reduced compressive strength and glass transition temperature of PUF decreased as contents of the flame retardant increased. After aging, the reduced compressive strength and glass transition temperature of PUF increased due to the reaction of unreacted isocyanate. The cell morphology effect of these flame retardants was also investigated using scanning electron microscope. The results of TCEP added to PUF showed an unstable and uneven cell morphology, leading to the increase of in thermal conductivity. The flame retardancy of vacuum aged PUF decreased compared to that of fresh PUF.

Combustion property comparison of rubber foam insulator by the variation of the glass fiber cross-Al foil thickness (Glass fiber cross-Al foil 차단막 두께에 따른 고무발포단열재 연소특성)

  • Cho, Hee-Ki;Lee, Duck-Hee;Lee, Cheul-Kyu;Paek, Min;Jung, Boung-Cheul
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.293-298
    • /
    • 2005
  • Insulator is being used for material of railroad vehicles as a barrier of heat and noise. But it shows various fire properties in case of fire. In this study, we compared smoke density(Ds) values of rubber foams with the different thickness of glass fiber cross-Al foil according to the standard of ASTM E 662. The result showed that the insulator and barrier property played an important role in decreasing the value of smoke density

  • PDF