• 제목/요약/키워드: Foam Industry

검색결과 96건 처리시간 0.025초

HFCs 감축에 따른 온실가스 감축량 산정방법론 연구 - 발포산업을 중심으로 - (A Study on the Methodology of Calculating Greenhouse Gas Emission Reduction by HFCs Reduction - Focusing on the Foam Industry -)

  • 최지원;김정만;안준관
    • 한국기후변화학회지
    • /
    • 제9권4호
    • /
    • pp.399-406
    • /
    • 2018
  • The purpose of this study is to propose a methodology for estimating greenhouse gas emission reduction through HFCs used in the foam industry. This study investigated characteristics of HFCs and greenhouse gas emissions from production processes in the foam industry, which uses HFCs as a blowing agent. Also, we investigated fluorinated gas removal technology to determine a proper technology for the foam industry. And we confirmed the criteria and characteristics of External Project for methodology development. According to criteria of External Project and foam industrial process emission, a methodology for calculating the amount of greenhouse gas emission reduction in foam industry was developed. Lastly, we analyzed the amount of greenhouse gas emission reduction and KOC (Korea Of Offset) in the foam industry based on the domestic government's plan to reduce HCFCs and imported amount of HFCs used as a blowing agent. The results of this study demonstrate that linking greenhouse gas reduction in the foam industry and the domestic greenhouse gas reduction system can contribute to achieve the domestic greenhouse gas reduction goal.

Numerical analysis on foam reaction injection molding of polyurethane, Part A: Considering re-condensation of physical foam agent

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • 한국결정성장학회지
    • /
    • 제26권5호
    • /
    • pp.209-214
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. Numerical model for polyurethane foam forming reaction during FRIM process has been intensively investigated by a number of researchers to precisely predict final shapes of polyurethane foams. In this study, we have identified a problem related with a previous theoretical model for polyurethane foam forming reaction. Thus, previous theoretical model was modified based on experimental and computational results.

감마선 조사에 의하여 가교된 폴리에틸렌 발포 시트의 제조 (Preparation of Polyethylene Foam Sheets Crosslinked by Gamma-ray Irradiation)

  • 이동훈;최준호;심기형;정찬희;황인태;최재학
    • 방사선산업학회지
    • /
    • 제6권3호
    • /
    • pp.211-215
    • /
    • 2012
  • In this study, crosslinked polyethylene (PE) foam sheets were prepared through gamma-ray irradiation. PE foam sheets were prepared through a foaming process using sodium bicarbonate as a blowing and foaming agent. The prepared PE foam sheets were then crosslinked through gamma-ray irradiation. The crosslinking degree was increased to 86.0% with an increase in the absorption dose. The tensile strength of the crosslinked PE foam sheets was increased with an increase in the absorption dose. However, the elongation-at-break of the crosslinked PE foam sheets was decreased. The thermal decomposition temperature of the crosslinked PE foam sheets was increased to $421.2^{\circ}C$ with an increase in the absorption dose. The SEM analysis revealed that the morphology was not changed significantly after the crosslinking through gamma-ray irradiation.

Numerical analysis on foam reaction injection molding of polyurethane, part B: Parametric study and real application

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • 한국결정성장학회지
    • /
    • 제26권6호
    • /
    • pp.258-262
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. The modified theoretical model for polyurethane foam forming reaction during FRIM process was established in our previous work. In this study, using the modified model, parametric study for FRIM process was performed in order to optimize experimental conditions of FRIM process such as initial temperature of mold, thickness of mold, and injection amount of polymerizing mixture. In addition, we applied the modified model to real application of refrigerator cabinet to determine optimal manufacturing conditions for polyurethane FRIM process.

친환경 고발포 소화약제 개발 및 성능 분석 연구 (Analysis of Performance and Development of Environment-friendly High Expansion Foam Concentrate)

  • 김하영;남준석;이동호
    • 한국안전학회지
    • /
    • 제25권4호
    • /
    • pp.25-29
    • /
    • 2010
  • Foam concentrate is used for fire-extinguishing purposes, occurring foam, mixed with air. In huge oil-fire or the efficiency of fire-extinguishing with small quantity of water, Foam concentrate is used widely. However, perfluorooc tanoicsulfonate and nonylpenol that are included in Foam concentrate could be exposure in danger while they were discharged. The purpose of the research is the development of environment-friendly high expansion foam that exclude the dangerous substances and improvement of danger of the existing foam concentrate. The developed foam is analyzed as the environment-friendly foam in indexes of the environment-toxicity, the biodegradation appraisal, and the dangerous substances-detecting. In addition, the performances of expansion rate, discharge rate, and fire-extinguishing are suitable in the domestic regulation, so it is useful for fire-extinguishing in real fire situation.

금속 분말을 이용한 합금폼 제조 및 특성 (Fabrication and Properties of Alloy Foam Materials using Metal Powders)

  • 최내현;김구환
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

압축공기포 소화설비의 소화성능 평가에 관한 연구 (A Study on Fire Extinguishing Performance Evaluation of Compressed Air Foam System)

  • 이장원;임우섭;김성수;이동호
    • 한국화재소방학회논문지
    • /
    • 제26권5호
    • /
    • pp.73-78
    • /
    • 2012
  • 본 연구는 압축공기포 소화설비의 소화성능을 평가하기 위해 포헤드 설비를 이용하여 실험을 진행 하였다. 압축공기포 소화설비는 포수용액에 압축공기를 혼입하여 포를 발생시키는 방식으로 해외에서는 원거리 방수가 가능하고 물 사용량을 줄여 수손피해를 최소화할 수 있는 압축공기포 소화설비(CAFS: Compressed Air Foam System)가 많이 활용되고 있다. 본 연구에서는 UL162 기준으로 수성막포 3 % 포 소화약제를 적용하여 기존의 공기 혼입 방식에 의한 포 소화설비와 압축공기포 소화설비간 비교 실험을 통하여 소화 성능 효과를 비교 분석하였다. 압축공기포 소화설비의 공기 혼입 비율은 포 수용액과 1 : 1의 부피 비율로 하였으며 발포유량은 각각 140 L/min, 160 L/min, 180 L/min, 200 L/min으로 변화를 주면서 소화효과를 검증하였다. 그 결과 소화 성능면에서는 압축공기포 소화설비가 공기 혼입 방식보다 모든 유량 조건에서 소화시간이 빠르게 나타났다.

고밀도 폴리우레탄 폼의 극저온 성능 분석 (Investigation of the Cryogenic Performance of the High Density Polyurethane Foam)

  • 김정현;김정대;김태욱;김슬기;이제명
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

폐폴리우레탄을 이용한 오일 흡수제의 제조 (A Study on the Preparation of Oil Absorbent Using Waste Polyurethane)

  • 김형순
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.73-80
    • /
    • 2007
  • The preparation of oil absorbent using waste polyurethane was studied. And the effects of shape, size, and contents of waste polyurethane foam was investigated. The waste foam was treated in shape of powder, cube and bar type generated from rigid sandwich panel process. The tests for flexural strength, combustibility, and water absorptivity were carried out to investigate the mechanical and physical properties of the recycled foams. And the cell microstructure was evaluated through Scanning Electron Micrograph. The recycled foam containing powder-shaped underfilled and showed poor properties that was generated through reactivity of the resins and increasing of slurry viscosity. For the recycled foam with the cube and bar-shaped, the underfilling was caused by interference between the waste PUFs and increasing surface areas of PUF. Low cell density, non-uniformity of cell shape and size, and low adhesion of the boundary surface (new/recycled) was showed as a result of the poor properties. Considering underfilling and the properties of PUF (new/recycled), maximum recycle contents were less than 20 wt% for the powder and above 40 wt% for the cube and bar.

  • PDF

담수와 해수에서의 포말 생성 특성 (Characteristics of Foam Generation in Freshwater and Seawater)

  • 신정식;김병진;서근학
    • 한국수산과학회지
    • /
    • 제37권3호
    • /
    • pp.179-185
    • /
    • 2004
  • The characteristics of foam generation were assessed for freshwater and seawater using a foam generator. Both in freshwater and seawater, the height of the foam layer increased with initial protein concentrations. The height of the foam layer also increased with pore size of the air distributor. The optimum superficial air velocities (SAV) in freshwater and seawater were 0.84 cm/sec and 0.6 cm/sec, respectively. The height of the foam layer was the highest in pH 3 in freshwater and in the region of pH 5-7 in seawater. The height of the foam layer increased with $NaHCO_3$ concentration in freshwater, and $NaHCO_3$ concentration had little effect in seawater. Removal efficiencies of total suspended solid (TSS) and turbidity decreased with an increase of initial protein concentrations in a batch foam separator both in freshwater and seawater.