• Title/Summary/Keyword: Foam Cushion

Search Result 12, Processing Time 0.018 seconds

Optimum Packaging Design of Packaging Tray and Cushion Pad of Korean Pears for Exporting using FEA Simulation (FEA 시뮬레이션 기법을 이용한 수출용 한국 배 포장 트레이 및 완충패드 최적 포장설계)

  • Choi, Dong-Soo;Son, Jae-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Jung, Hyun-Mo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.843-852
    • /
    • 2020
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for packaging trays and cushion pads used in pear packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and can be solved by applying various parameters needed to optimize the design of the packaging tray and cushion pad considering the packaging material and the number of pears in the box. In the case of a cushion pad for pears, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a packaging tray and cushion pad depending on eco-friendly packaging materials (PLA, PET) used by applying appropriate design parameters. The static characteristics of the materials used for the packaging of pears were analyzed using FEA (finite element analysis) simulation technique to derive the optimal design parameters. In this study, we analyzed the contact stress and deformation of PET, PLA tray (0.1, 0.5 1.0, 1.5 and 2 mm) and PET foam (2.0, 3 .0 and 4.0 mm) with pears to derive appropriate cushion packaging design factors. The contact stress between the pear and PET foam pad placed on PLA, PET trays were simulated by FEA considering the bioyield strength (192.54±28 kPa) of the pears and safety factor (5) of packaging design, which is the criterion of damage to the pears. For the combination of PET tray and PET foam buffer pad, the thickness of the PET foam is at least 3 mm, the thickness of the PET foam is at least 1.0 mm, the thickness of the foam is at least 2 mm, and if the thickness of the PET tray is at least 1.5 mm, the thickness of the foam is at least 1 mm, suitable for the packaging design. In addition, for the combination of PLA tray and PET foam pad, the thickness of the PET foam was not less than 2 mm if the thickness of the PLA tray was 0.5 mm, and 1 mm or more if the thickness of the PLA tray was not less than 1.0 mm, the thickness of the PET foam was suitable for the packaging design.

Polyurethane Flexible Foam for Automotive Seat Cushion Having Both Superior Static and Dynamic Properties (우수한 정적, 동적 특성을 보이는 자동차 시트용 폴리우레탄 발포체)

  • Hong, Chae-Hwan;Back, Han-Sung;Kim, Kyung-Man;Kim, Sung-Yoon;Choi, Sok-Min;Hwang, Tae-Won
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • Polyurethane flexible foams have been widely used for automotive seat cushions because of their excellent performance. It has been required so far to reduce the density of seat cushion foam. However, recently, improving the riding comfort of seat cushions becomes more important. With regard to riding comfort, we investigated the improvement of static properties such as the ball rebound property and the hysteresis loss. We also studied the vibration characteristics, which are well known as an important factor to affect the comfort performance during driving.

A Study on the Minimization of Transmissibility of Seat Foam in Passenger Vehicles (승용차 시트용 폼의 진동전달율 최소화에 관한 연구)

  • 류운영;박명혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.110-120
    • /
    • 1997
  • One of the most important factor for the comfort of the passenger vehicles is the minimization of the compressible transmissibility during the running vehicles. Seat foam materials of I2 series(index 95 and the contents of isocyanate TDI was changed in percentages 75, 70, 65, 60, 50, 40) and DI series(density 50kg/$\textrm{m}^3$, index was changed 100, 95, 90) showed the significant differences in their transmissibility depended upon their chemical constitution such as index and contents of isocyanate TDI. The minimum trasmissibility of seat foam materials of I2 series was found from the materials with the contents of 65% isocyanate TDI and the index 95 at the frequency 4.79~5.31Hz. Also the minimum transmissibility of seat foam materials of DI series was found from the materials with the index 90 and the density of 50kg/$\textrm{m}^3$ at the frequency of 4.79~5.31Hz.

  • PDF

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

A Study on Noxious Gases Analysis of Polyurethane foams (Polyurethane foam의 유해가스 분석에 관한 연구)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.7-13
    • /
    • 2000
  • We had investigated thermal stability, Ignition temperature and fire gas for polyurethane foams used for manikin, cushion and interior finishing material. Decomposition of polyurethane foams with temperature was investigated using a DSC and the weight loss with temperature increase using a TGA in order to find the thermal hazard of polyurethane foams, and the ignition temperature of polyurethane foams according to species. We studied constant temperature among ignition temperature measuring methods. In addition, noxious gases for polyurethane foams according to combustion condition were analyzed using gas analyzer and GASTEC. As results, initial decomposition temperature of polyurethane foam used for interior finishing material was lower than those for manikin and cushion, and exothermic energy was higher. Ignition temperature of polyurethane foam of interior finishing material was $420^{\circ}$. All of combustion forms at $427^{\circ}$ and under were smoldering combustion, and it was combustion at $500^{\circ}$. As furnace temperature was increased, concentration of noxious gases such as carbon oxide, carbon dioxide, and hydrogen cyanide was increased. And nitrogen oxide at combustion condition($500^{\circ}$) was over 10 ppm.

  • PDF

Estimation of Air Flow Rate in Automotive Ventilated Seat (자동차 통풍 시트의 유량 평가)

  • Lee, Hyun-Hee;Kim, Tae-Kyung;Lee, Kwangju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.34-40
    • /
    • 2016
  • In ventilated seats for cars, air flow is generated by a fan and passed through a foam pad, foam filter, and seat cover. There is a significant loss of air flow in this process, and it is not easy to analyze the amount delivered to the driver. Another difficulty is the geometric complexity of the air flow passage inside the seats. In this paper, the air flow through a foam pad was analyzed. Proper modeling of the bumps in the ventilation mat was found to be important in the analysis. Air flow is lost when it passes through the porous pad foam, which was measured and used to correct the analysis results. The corrected analysis results were in a good agreement with the experimental results. The amount of air flow delivered to a driver was measured using an airflow cone. Only 35.7% of the air flow from the fan was delivered.

Modeling of air cushion vehicle's flexible seals under steady state conditions

  • Zalek, Steven F.;Karr, Dale G.;Jabbarizadeh, Sara;Maki, Kevin J.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • The purpose of this paper is to demonstrate the efficacy of modeling a surface effect ship's air-cushion flexible seal utilizing a two-dimensional beam under steady state conditions. This effort is the initial phase of developing a more complex three-dimensional model of the air-seal-water fluid-structure interaction. The beam model incorporates the seal flexural rigidity and mass with large deformations while assuming linear elastic material response. The hydrodynamic pressure is derived utilizing the OpenFOAM computational fluid dynamic (CFD) solver for a given set of steady-state flow condition. The pressure distribution derived by the CFD solver is compared with the pressure required to deform the seal beam model. The air pressure, flow conditions and seal geometry are obtained from experimental analysis. The experimental data was derived from large-scale experimental tests utilizing a test apparatus of a canonical surface effect ship's flexible seal in a towing tank over a variety of test conditions.

Estimation of Pyrolysis Properties for Fire Propagation Analysis of Furniture Materials (가구소재의 화재전파해석을 위한 열해리 물성 평가)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • The present study has been conducted to investigate the reaction kinetics and pyrolysis parameters for flame propagation analysis of furniture material components. TGA measurement for component materials such as MDF (medium density fiberboad) panel including coating material, synthetic leather and foam cushion are performed under maximum temperature of $600^{\circ}C$ and heating rate of $10^{\circ}C/min$. The results of TGA have shown that the peak temperature of MDF panel was $324^{\circ}C$ and the initial peak temperature of coating material decreased by $270{\sim}280^{\circ}C$. In the case of synthetic leather and foam materials, the reference temperature and reference rate depend on the type of polymer consisting the sample, the initial kinetic characteristics was classified into 2 categories of about $270^{\circ}C$ and $420^{\circ}C$ of reference temperature for the tested synthetic materials. The present study showed the pyrolysis parameters of reference temperature and reference rate proposed by Lyon to evaluate the pre-exponential factor and activation energy. The present study can contribute to improve the reliability of computational fire analysis and enhance the understanding of fire propagation phenomena based on the thermal properties study of material.

Effect of Chemical Foaming Process on the Cellular Structure Development and Correlation with the Mechanical and Physical Property of PBAT (화학적 발포 공정이 PBAT 발포 셀 구조 발달에 미치는 영향과 기계적, 물리적 특성과의 상관관계 연구)

  • Yeong ho Ji;Tae Hyeong Park;Ji Eun Choo;Sung Wook Hwang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 2024
  • Poly (butylene adipate-co-terephthalate) (PBAT) is one of the representative biodegradable polymers with high ductility and processability to replace petroleum-based polymers. Many investigations have been conducted to broaden the applications of PBAT in a variety of industries, including the food packaging, agricultural mulching film, and logistics and distribution fields. Foaming process is widely known technique to generate the cell structure within the polymer matrix, offering the insulation and light weight properties. However, there was no commercially feasible foam product based on biodegradable polymers, especially PBAT, and maintaining a proper melt viscosity of the polymer would be a key parameter for the foaming process. In this study, chemical foaming agent and cross-linking agent were introduced to PBAT, and a compression molding process was applied to prepare a foam sheet. The correlation between cell morphological structures and mechanical and physical properties was evaluated. It was found that PBAT with foam structures effectively reduced the density and thermal conductivity, allowing them to be suitable for applications such as insulation and lightweight packaging or cushion materials.

Biomechanical Evaluation of the Neck and Shoulder When Using Pillows with Various Inner Materials

  • Kim, Jung-Yong;Park, Ji-Soo;Park, Dae-Eun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.339-347
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate of various material of pillows by using biomechanical variables such as the cervical stability, head pressure distribution, and muscle activity. Method: Eight subjects participated in the experiment. Three different materials such as polyester sponge, memory foam and the buckwheat shell used for Korean traditional pillow were tested. Electro-goniometer, six channels of electromyography(EMG), ten channels of the head pressure sensors were used to measure the biomechanical responses. Surface electrodes were attached to the right/left semispinals capitis(RSC, LSC), the right/left sternocleidomastoid(RSM, LSM), the right/left upper trapezius(RUT, LUT). The cervical stability was evaluated by the angle deviated from the standing neck position. The head pressure distribution was evaluated by the pressure per unit area recorded on the sensors and the intensity of peak pressure. Electromyography(EMG) data were analyzed by using root mean square(RMS) and mean power frequency(MPF). Results: The buckwheat shell material showed a higher stability in the cervical spine then the other pillows during spine position. In terms of head pressure distribution, the memory form indicated the lowest pressure at supine position, buckwheat shell material indicated the lowest pressure during lying down to side, and polyester cushion recorded the highest pressure at all postures. Conclusion: The buckwheat shell material has a biomechanical advantage to maintain a healthy neck angle and reduce the pressure on the head, which means the buckwheat shell is a potential material for ergonomic pillow design. The pillow with memory form showed second best biomechanical performance in this study. Application: The shape of the buckwheat shell pillow and the characteristics of materials can be used to design the pillow preventing neck pain and cervical disk problems.