DOI QR코드

DOI QR Code

Effect of Chemical Foaming Process on the Cellular Structure Development and Correlation with the Mechanical and Physical Property of PBAT

화학적 발포 공정이 PBAT 발포 셀 구조 발달에 미치는 영향과 기계적, 물리적 특성과의 상관관계 연구

  • Yeong ho Ji (Department of Chemical Engineering, Keimyung University) ;
  • Tae Hyeong Park (Department of Chemical Engineering, Keimyung University) ;
  • Ji Eun Choo (Department of Chemical Engineering, Keimyung University) ;
  • Sung Wook Hwang (Department of Chemical Engineering, Keimyung University)
  • 지영호 (계명대학교 화학공학과) ;
  • 박태형 (계명대학교 화학공학과) ;
  • 추지은 (계명대학교 화학공학과) ;
  • 황성욱 (계명대학교 화학공학과)
  • Published : 2024.04.30

Abstract

Poly (butylene adipate-co-terephthalate) (PBAT) is one of the representative biodegradable polymers with high ductility and processability to replace petroleum-based polymers. Many investigations have been conducted to broaden the applications of PBAT in a variety of industries, including the food packaging, agricultural mulching film, and logistics and distribution fields. Foaming process is widely known technique to generate the cell structure within the polymer matrix, offering the insulation and light weight properties. However, there was no commercially feasible foam product based on biodegradable polymers, especially PBAT, and maintaining a proper melt viscosity of the polymer would be a key parameter for the foaming process. In this study, chemical foaming agent and cross-linking agent were introduced to PBAT, and a compression molding process was applied to prepare a foam sheet. The correlation between cell morphological structures and mechanical and physical properties was evaluated. It was found that PBAT with foam structures effectively reduced the density and thermal conductivity, allowing them to be suitable for applications such as insulation and lightweight packaging or cushion materials.

본 연구에서는 PBAT의 가교 개질을 위해 DCP를 도입하였고 화학발포제인 ADC를 PBAT에 분산시킨 후 압축 성형 공정으로 발포제의 분해를 통해 셀을 형성하여 시트형태의 PBAT 발포체를 제작하였다. FT-IR 분석을 통해 DCP의 분해를 확인하였으며 DCP 함량에 따른 PBAT의 용융 흐름 지수를 비교하여 가교로 인한 용융 점도의 향상을 확인할 수 있었다. DSC 분석을 통해 열적 특성을 비교한 결과 Tc의 변화를 확인할 수 있었고 이를 통해 DCP 첨가로 인한 가교 반응의 결과를 확인할 수 있었다. TGA 분석 결과를 통해 DCP의 첨가가 열 안정성의 유의미한 차이를 야기시키지 않는 것을 확인하였다. 발포 시트의 DCP 함량 별 기계적 물성은 유의미한 차이를 보이지 않았으나 PB_D3에서 다소 낮은 인장강도를 보였으며 PB_D3의 큰 셀 사이즈로 인해 응력 전달에 부정적으로 작용하여 인장강도 및 연신율이 감소하였을 것으로 판단하였다. DCP 함량 증가에 따라 발포 셀의 개수는 감소하였으나 평균 셀 사이즈는 증가하였고 가장 큰 PB_D3의 평균 셀 사이즈로 인해 발포 시트의 밀도가 가장 낮게 나타났다. 반면 이러한 큰 셀의 사이즈와 낮은 밀도는 열전도도를 감소시키는 요인으로 작용하여 PB_D3 발포 시트의 경우 최대 0.066 W/mk 까지 감소시킬 수 있었기에, 단열 특성을 지닌 생분해성 발포 시트로의 활용에 대한 가능성을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 해양수산부 수산물 신선유통 스마트 기술개발사업에 의하여 이루어졌으며 연구비 지원에 감사드립니다(RS-2021-KS211537).

References

  1. Okada, M., 2002, Chemical syntheses of biodegradable polymers. Progress in polymer science 27 (1): 87-133. https://doi.org/10.1016/S0079-6700(01)00039-9
  2. Bordes, P.; Pollet, E.; Averous, L., 2009, Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in Polymer Science 34 (2): 125-155. https://doi.org/10.1016/j.progpolymsci.2008.10.002
  3. Jian, J.; Xiangbin, Z.; Xianbo, H., 2020, An overview on synthesis, properties and applications of poly (butylene-adipate-co-terephthalate)-PBAT. Advanced Industrial and Engineering Polymer Research 3 (1): 19-26. https://doi.org/10.1016/j.aiepr.2020.01.001
  4. Raquez, J. M.; Nabar, Y.; Narayan, R.; Dubois, P., 2008, Novel high-performance talc/poly [(butylene adipate)-coterephthalate] hybrid materials. Macromolecular materials and engineering 293 (4): 310-320. https://doi.org/10.1002/mame.200700352
  5. Vroman, I.; Tighzert, L., 2009, Biodegradable polymers. Materials 2 (2): 307-344. https://doi.org/10.3390/ma2020307
  6. Ferreira, F. V.; Cividanes, L. S.; Gouveia, R. F.; Lona, L. M., 2019, An overview on properties and applications of poly (butylene adipate-co-terephthalate)-PBAT based composites. Polymer Engineering & Science 59 (s2): E7-E15.
  7. Muthuraj, R.; Misra, M.; Mohanty, A., 2015, Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. Journal of Applied Polymer Science 132 (27).
  8. Yue, J.-F.; Gan, L.; Liu, C.-H.; Ma, X.-Z.; Wang, D.; Huang, J., 2018, Heat-counteracted strategy for tailoring the cell structure and properties of sustainable poly (butylene succinate) foams. Polymer 155: 50-57. https://doi.org/10.1016/j.polymer.2018.09.029
  9. Tian, H.-L.; Wang, Z.-P.; Jia, S.-L.; Pan, H.-W.; Han, L.-J.; Bian, J.-J.; Li, Y.; Yang, H.-L.; Zhang, H.-L., 2021, Biodegradable foaming material of poly (butylene adipate-co-terephthalate)(PBAT)/poly (propylene carbonate)(PPC). Chinese Journal of Polymer Science: 1-12.
  10. Jiang, X.-L.; Bao, J.-B.; Liu, T.; Zhao, L.; Xu, Z.-M.; Yuan, W.-K., 2009, Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. Journal of Cellular Plastics 45 (6): 515-538. https://doi.org/10.1177/0021955X09339470
  11. Bahari, K.; Mitomo, H.; Enjoji, T.; Yoshii, F.; Makuuchi, K., 1998, Radiation crosslinked poly (butylene succinate) foam and its biodegradation. Polymer Degradation and Stability 62 (3): 551-557. https://doi.org/10.1016/S0141-3910(98)00041-X
  12. Sar Herrera, G. Use of supercritical CO2 as a foaming agent for Poly (butylen adipate-co-terephthalate) nanocomposites. Universitat Politecnica de Catalunya, 2013.
  13. Sharif-pakdaman, A.; Ghasemi-mehrabadi, S., Using chemical blowing agent systems based on azodicarbonamide for producing polyethylene foams.
  14. Jeong, J.; Kim, T.; Cho, W. J.; Chung, I., 2013, Synthesis and decomposition performance of a polymeric foaming agent containing a sulfonyl hydrazide moiety. Polymer international 62 (7): 1094-1100. https://doi.org/10.1002/pi.4398
  15. O'Connor, C., 1999; Chemical Blowing Agent Systems for Polymer Foam Manufacture. The University of Manchester (United Kingdom).
  16. Boonprasertpoh, A.; Pentrakoon, D.; Junkasem, J., 2020, Effect of PBAT on physical, morphological, and mechanical properties of PBS/PBAT foam. Cellular Polymers 39 (1): 31-41. https://doi.org/10.1177/0262489319873859
  17. Yuan, H.; Liu, Z.; Ren, J., 2009, Preparation, characterization, and foaming behavior of poly (lactic acid)/poly (butylene adipate-co-butylene terephthalate) blend. Polymer Engineering & Science 49 (5): 1004-1012.
  18. Luo, Y.; Zhang, J.; Qi, R.; Lu, J.; Hu, X.; Jiang, P., 2013, Polylactide foams prepared by a traditional chemical compression-molding method. Journal of Applied Polymer Science 130 (1): 330-337. https://doi.org/10.1002/app.39023
  19. Song, J.; Mi, J.; Zhou, H.; Wang, X.; Zhang, Y., 2018, Chain extension of poly (butylene adipate-co-terephthalate) and its microcellular foaming behaviors. Polymer degradation and stability 157: 143-152. https://doi.org/10.1016/j.polymdegradstab.2018.10.009
  20. Zhang, R.; Cai, C.; Liu, Q.; Hu, S., 2017, Enhancing the melt strength of poly (lactic acid) via micro-crosslinking and blending with poly (butylene adipate-co-butylene terephthalate) for the preparation of foams. Journal of Polymers and the Environment 25: 1335-1341. https://doi.org/10.1007/s10924-016-0911-3
  21. Nagarajan, V.; Misra, M.; Mohanty, A. K., 2013, New engineered biocomposites from poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly (butylene adipate-co-terephthalate) (PBAT) blends and switchgrass: Fabrication and performance evaluation. Industrial crops and products 42: 461-468. https://doi.org/10.1016/j.indcrop.2012.05.042
  22. Vamza, I.; Valters, K.; Dzalbs, A.; Kudurs, E.; Blumberga, D., 2021, Criteria for choosing thermal packaging for temperature sensitive goods transportation. Environmental and Climate Technologies 25 (1): 382-391. https://doi.org/10.2478/rtuect-2021-0028
  23. Zhang, Y.; Kontopoulou, M.; Ansari, M.; Hatzikiriakos, S.; Park, C. B., 2011, Effect of molecular structure and rheology on the compression foam molding of ethylene-α-olefin copolymers. Polymer Engineering & Science 51 (6): 1145-1154.
  24. Chivrac, F.; Kadlecova, Z.; Pollet, E.; Averous, L., 2006, Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. Journal of Polymers and the Environment 14: 393-401. https://doi.org/10.1007/s10924-006-0033-4
  25. Nofar, M.; Majithiya, K.; Kuboki, T.; Park, C. B., 2012, The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. Journal of Cellular Plastics 48 (3): 271-287. https://doi.org/10.1177/0021955X12440271
  26. Weng, Y.-X.; Jin, Y.-J.; Meng, Q.-Y.; Wang, L.; Zhang, M.; Wang, Y.-Z., 2013, Biodegradation behavior of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend under soil conditions. Polymer Testing 32 (5): 918-926. https://doi.org/10.1016/j.polymertesting.2013.05.001
  27. Wu, D.; Huang, A.; Fan, J.; Xu, R.; Liu, P.; Li, G.; Yang, S., 2021, Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly (butylene adipate-co-terephthalate)/poly (lactic acid) blends. Journal of Polymer Engineering 41 (2): 95-108. https://doi.org/10.1515/polyeng-2020-0161
  28. Kim, D.; Kim, W.; Lee, D.; Min, K.; Park, L.; Kang, I.; Jeon, I.; Seo, K., 2001, Modification of poly (butylene succinate) with peroxide: crosslinking, physical and thermal properties, and biodegradation. Journal of applied polymer science 81 (5): 1115-1124. https://doi.org/10.1002/app.1534
  29. Cui, Y.; Zhou, H.; Yin, D.; Zhou, H.; Wang, X., 2021, An innovative strategy to regulate bimodal cellular structure in chain extended poly (butylene adipate-co-terephthalate) foams. Journal of Vinyl and Additive Technology 27 (2): 319-331. https://doi.org/10.1002/vnl.21805
  30. Boonprasertpoh, A.; Pentrakoon, D.; Junkasem, J., 2017, Effect of crosslinking agent and branching agent on morphological and physical properties of poly (butylene succinate) foams. Cellular Polymers 36 (6): 333-354. https://doi.org/10.1177/026248931703600603
  31. Han, J. H.; Lee, J.; Kim, S. K.; Kang, D.; Park, H. B.; Shim, J. K., 2023, Impact of the amylose/amylopectin ratio of starch-based foams on foaming behavior, mechanical properties, and thermal insulation performance. ACS Sustainable Chemistry & Engineering 11 (7): 2968-2977.
  32. Nofar, M.; Ameli, A.; Park, C. B., 2015, Development of polylactide bead foams with double crystal melting peaks. Polymer 69: 83-94. https://doi.org/10.1016/j.polymer.2015.05.048