• Title/Summary/Keyword: Flywheel energy storage system

Search Result 153, Processing Time 0.032 seconds

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

A Study on the Determination of Slot's Number of Rotor to Reduce Noise and Vibration and Design the 3-Phase Induction Motor Considering Kinetic Energy in Flywheel Energy Storage System (운동 에너지를 고려한 Flywheel Energy Storage System 설계와 진동 저감을 위한 3상 유도기의 슬롯수 산정에 관한 연구)

  • Ryu, Jae Ho;Kim, Hui Min;Lee, Chee Woo;Park, Gwan Soo;Jeong, Dong Wook
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Flywheel Energy Storage System (FESS) is composed by flywheel generating rotating potential energy and motor/generator set charging and discharging electric potential energy. The flywheel and motor/generator is connected by rotating shaft. And torque characteristics of motor/generator part can influence charging and mechanical traits of FESS. This paper analyze about motor/generator design method of 5 [kWh] FESS and torque ripple, harmonic effects by change of slots. At First, this paper proposes a method to estimate the flywheel size and the rotor size of the motor from the the rotational kinetic energy by inertia of FESS. The number of induction motor rotor slots for torque ripple reduction in the high speed operation region is selected. This paper performs to reduce the noise and vibration of the flywheel composed of coaxial with motor/generator and flywheel and realize the high efficiency.

Rotordynamic Analysis and Experiment of Superconducting Magnetic Bearings-Flywheel System (초전도 자기베어링-플리이휠 시스템의 회전체 해서 및 실험)

  • Kim, Jong-Soo;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.104-109
    • /
    • 1999
  • The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotatioal kinetic energy by motor and to convert it to electrical energy by generator when it is necessary. The rotordynamic analysis should be performed with an adequate analytical model and equations of motion to identify the stable driving condition and the dynamic behavior. The critical speed and the unbalance response of superconducting magnetic bearings-flywheel system are studied in this paper. The analytical results show that the system has one forward whirling mode and two backward whirling models below 500rpm. The maximum displacement 0.75mm is detected at the first forward mode (385rpm)through unbalance response analysis. The analytical results are compared with the experimental result by the spin-down test. The experimental result shows that the maximum displacement is 0.7mm at 370rpm.

  • PDF

Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing (하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가)

  • Lee, J.P.;Kim, H.G.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

Development of a Turbine Based Flywheel Energy Storage System Using Traveling Wind Power of an Urban Train (도시철도차량 주행풍을 이용한 터빈형 플라이휠 에너지 저장시스템 개발에 관한 연구)

  • Seo, Yong-Bum;Im, Jae-Moon;Shin, Kwang-Bok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.443-449
    • /
    • 2014
  • This study aims to develop a Flywheel Energy Storage System (FESS) that uses wind power produced when an urban train is in motion, by utilizing a mounted turbine. This system was designed to generate and store electric power from wind power of a travelling urban train. The flywheel was designed to continue rotation using a one-way clutch bearing installed in the turbine shaft pulley, even in cases where the urban train decelerates or stops. This FESS can generate an additional 44% of electric power in comparison to a system not equipped with a flywheel. The generated power and operational features of the FESS were evaluated and verified through a wind tunnel test. The results show that the electric power stored in the FESS could supply auxiliary power for urban train components or service equipment, such as charging mobiles, Wi-Fi modules, and electric lights.

Structural Analysis considering Electromagnetic Force on Motor/Generator for Flywheel Energy Storage System (전자기력을 고려한 플라이휠 에너지 저장시스템용 전동발전기 구조해석)

  • Ko, W.S.;Ryu, D.W.;Oh, S.D.;Seong, Tae-Hyeon;Han, Sang-Cheol;Han, Yeong-Hui
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.485-490
    • /
    • 2004
  • Flywheel Energy Storage System(FESS) consists of a high speed flywheel with an integral motor/generator suspended on non contact bearings and in an evacuated housing. Permanent magnet machines as the FESS motor/generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper, the structural design method of rotor retainer for a high speed motor/generator are presented.

  • PDF

Application of Hybrid-type High-T_{c}$ Superconductor Journal Bearings to Flywheel Energy Storage Device (복합형 고온초전도 저어넬베어링의 플라이휠 에너지 저장장치 응용)

  • 이준성;성태현;한상철;한영희;정상진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.121-124
    • /
    • 1999
  • A horizontal axle-type superconductor flywheel energy storage system has many great features such as extensibility and stability compared to the traditional vertical axle-type flywheel systems. In this paper, a prototype flywheel device with a horizontal axle is presented briefly, and the hybrid construction as an essential supplement in superconductor journal bearing design against the levitation drift is proposed.

  • PDF

Design of Magnetic Levitating Flywheel Energy Storage System (자기부상형 플라이휠 에너지 저장 장치의 자기베어링 시스템 설계)

  • Yoo, S.;Mo, S.;Choi, S.;Lee, J.;Han, Y.;Noh, M.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.963-967
    • /
    • 2007
  • Flywheel energy storage systems (FESS) have advantages over other types of energy storage methods due to their infinite charge/discharge cycles and environmental friendliness. The system has two radial bearings and one hybrid-thrust bearing. Thrust hybrid-type bearing use permanent magnet to relieve gravity load. The radial bearings were designed to provide sufficient force slew rate considering the unbalance disturbance at the operating speeds. In this paper, we will derive dynamic model of hybrid-type bearing using permanent magnet for thrust bearing and present simulation and stability of the model.

  • PDF