강체기반 안정성 해석에 따른 대용량 플라이휠 에너지저장 장치의 최적설계 Optimal Design of Flywheel Energy Storage System Using Stability Analysis

김정완¹, ^{*}유승열¹, [#]노명규²

J. W. Kim¹, S. Y. Yoo¹, M. D. Noh(mnoh@cnu.ac.kr)² ¹ 충남대학교 BK21메카트로닉스 사업단 ²충남대 메카트로닉스 공학과

Key words : Flywheel Energy Storage System, Optimal Design, Stability Analysis

1. 서론

하절기와 동절기, 낮과 밤 사이의 전력수요 차이로 인하여 전력공급 안정성에 문제가 발생한다. 전력산업의 발생과 더불어 발생한 문제점으로 전력 환경이 불안정해짐에 따라 전력을 사용 하는 시스템의 전반적인 불안정이 발생할 수 있다.[1]

이러한 문제점을 해결하기 위하여 에너지 저장장치에 대한 관심이 높아지고 있으며 일반적으로 전해물질을 이용한 화학전 지를 사용한다. 그러나 화학전지는 경제적이지만 무게가 무겁고 효율이 60%정도로 낮으며[2] 생산 및 폐기시 유해물질을 배출하 고 반복 사용시 저장할 수 있는 에너지의 양이 적어지는 단점이 있다. 이러한 단점을 플라이휠 에너지 저장장치를 통해 보완할 수 있다. 플라이휠 에너지 저장시스템은 양수발전, 압축공기 저장방식과 함께 기계적 에너지 저장방식의 일종으로 화학전지 와 같이 소형화, 모듈화가 가능하여 흔히 기계전지, 플라이휠 전지라고도 불리는 저장시스템으로 반복사용에 대해 수명이 반영구적이고 오염물질을 배출하지 않으며 화학전지와 비교하 여 단위 무게당 저장에너지 양이 많다는 장점이 있다.

본 논문에서는 플라이휠 에너지 저장장치의 설계시 에너지 밀도가 최대인 극관성모멘트와 횡관성모멘트의 비율을 도출하 고 회전속도에 따른 시스템 안정성을 고려하여 최적설계를 수행 한다.

2. 시스템의 동적 모델

Fig.1 은 플라이휠 에너지 저장장치의 개략도이다. 회전체의 중앙에는 이중 구조의 섬유 강화 복합재료로 만들어진 플라이휠 이 장착되어 있다. 회전체의 반경방향 움직임은 상부와 하부에 위치한 능동형 자기베어링에 의해 지지되며 회전체의 반경방향 위치는 두 쌍의 센서에 의해 측정된다.

플라이휠 에너지 저장 장치의 동역학적 특성 확인과 제어기 설계를 위해서는 동역학적 모델 유도가 필요하다. 플라이휠의 최대 운전속도가 1차 굽힘 모드 아래에 있다고 가정하면

Fig1. Schematic diagram of a flywheel energy storage system

Fig. 1 의 좌표와 힘의 방향을 고려하여 회전축의 동역학적 모델[3]을 구할 수 있다.

$$m\ddot{x} = F_x^d + F_x^U + F_x^L \tag{1}$$

$$m\ddot{y} = F_y^d + F_y^U + F_y^L \tag{2}$$

$$I_t \ddot{\theta}_x + \Omega I_p \dot{\theta}_y = -F_y^U z_a^U - F_y^L z_a^L \tag{3}$$

$$I_t \ddot{\theta}_v - \Omega I_p \dot{\theta}_x = F_x^U z_a^U + F_x^L z_a^L \tag{4}$$

여기서, F^d는외란, F^U, F^L은 상하부의 베어링 힘, I_p는 극관성 모멘트, I_t는 횡관성모멘트, Z^U_a,Z^L은 중심에서 베어링 상,하부 까지의 거리이다.

바이어스 선형화 방법을 이용하면 베어링 힘을 제어전류와 회전자 위치에 따라 선형화 할 수 있으며 이를 식으로 나타내면

$$F_q^A = -K_r^A q^A + K_i^A i_q^A, \quad A = U, L \quad \text{and} \quad q = x, y$$
(5)

이다. 식 (5)에서 K_r^A 은 반경방향 엑츄에이터의 강성계수, K_i^A 는 액츄에이터 게인이다. 식(5)를 식(1)-(4)에 대입하여 행렬 형태로 정리하면

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{w}}_{x} \\ \ddot{\mathbf{w}}_{y} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \Omega \mathbf{G} \\ -\Omega \mathbf{G} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{w}}_{x} \\ \dot{\mathbf{w}}_{y} \end{bmatrix} + \begin{bmatrix} \mathbf{K} & \mathbf{0} \\ \mathbf{0} & \mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{x} \\ \mathbf{w}_{y} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{b}_{u} \mathbf{i}_{x} \\ \mathbf{b}_{u} \mathbf{i}_{y} \end{bmatrix} + \begin{bmatrix} \mathbf{b}_{d} F_{x}^{d} \\ \mathbf{b}_{d} F_{y}^{d} \end{bmatrix}$$
(6)

와 같이 표현될 수 있다. 여기서 M 은 질량행렬, Ω는 회전속도 G 는 자이로스코프행렬, K 는 강성행렬, b_u 는 제어 입력행렬 b_d 외란 입력행렬이다. 식(6)을 상태방정식으로 표현하면

$$x = A(\Omega)x + B_u u + B_d d \tag{7}$$

$$w = u \tag{8}$$

$$z = y + n = C_y x + n \tag{9}$$

이다. 여기서 *u* 는 제어 입력, *d* 는 외란, *y* 는 센서출력, *n* 은 잡음 신호이며, *A*(Ω) 는 회전속도에 따라 변하는 동역학 특성을 포함한다. Fig. 2는 식(7), (8), (9)의 시스템 모델과 제어기를 블록선도로 나타낸 것이다.

Fig2. Block diagram of the dynamic model

3. 최적설계

동역학적 특성이 속도에 따라 변하는 플라이휠 에너지 저장장 치는 자이로스코픽 효과에 의해 속도가 증가하면 불안정상태가 될 수 있으므로 시스템 설계시 안정성을 고려할 필요가 있다. Fig. 2 시스템의 안정성은 전달함수의 극 위치가 복소평면의 좌측에 놓여있는지를 통해 확인 할 수 있다.

플라이휠 에너지 저장장치가 가지는 에너지 용량을 식(10)과 같이 계산할 수 있다.

$$J = \frac{1}{2} I_p \,\omega^2 \tag{10}$$

여기서 *I_p*는 극관성모멘트, ω는 회전속도이다. 이때, 플라이휠의 극관성모멘트와 횡관성모멘트는 Fig. 1의 파라미터를 참조하면

$$I_{p} = \frac{1}{2}m \left(r_{f}^{2} + r_{r}^{2}\right)$$
(11)

$$I_T = \frac{1}{12}m \left(3r_f^2 + 3r_r^2 + h^2\right)$$
(12)

와 같이 표현할 수 있다. 모멘트 비율은 로터길이 h와 로터반지름 r_r 플라이휠 반지름 r_f에 영향을 받아 형상에 따라 다른 에너지 용량을 가질 수 있음을 알 수 있다.

에너지 밀도를 평가하기 위해 SED(Specific Energy Density) 를 다음과 같이 정의할 수 있다.

$$SED = \frac{1}{4} (r_f^2 + r_r^2) \omega^2$$
 (13)

안정성을 고려한 에너지 밀도의 최대화를 위해 I_pI_t 비의 변화에 따른 안정성 해석을 수행하였다. 극관성모멘트 I_p 를 고정한 후 플라이휠의 높이와 직경을 변화시켜 I_pI_t 비를 변화 하였다.해 석을 수행한 결과는 Table1에 정리되어 있다.

극관성모멘트와 횡관성모멘트의 비율은 식(14)를 이용하여 구할 수 있다.

$$\frac{I_p}{I_t} = \frac{6(r_f^2 + r_r^2)}{3r_f^2 + 3r_r^2 + h^2}$$
(14)

I_µ/I_t ratio가 커질수록 플라이휠의 형상은 긴 막대 모양에서 넓은 도넛 모양으로 변하는 것을 table 1을 통해 확인해볼 수 있고 이때 동일한 극모멘트 값을 내기위한 질량이 줄어들어 에너지밀도는 증가한다. L 은 플라이휠 높이 h에서 상하 베어링 과 센서 부착 위치를 고려한 70㎝의 길이가 더해진 값이고 로터의 반지름 역시 45㎝로 고정된 값으로 계산한다. 에너지 밀도만을 고려하면 회전속도가 일정한 경우 I_µ/I_t 비가 높을수록 유리하다. Fig. 4의 점선은 회전속도 20000ഈ미일때 I_µ/I_t 에 따른 SED로서 I_µ/I_t 가 1.9일때 최대값을 얻을 수 있다. 안정성을 고려하면 I_µ/I_t 비에 제한이 있을 수 있다. 자기베어링의 제어기를 고려하

Ip/It	Ip	It	n	Radius	Height	Mass
ratio	(kgm ²)	(kgm ²)	(h/r)	(m)	(m)	(Kg)
0.3	13.4	44.66	4.12	0.22	0.91	467.97
0.5	13.4	26.80	3.00	0.23	0.71	414.95
0.7	13.4	19.14	2.36	0.25	0.59	380.06
0.9	13.4	14.88	1.91	0.26	0.50	351.83
0.1	13.4	12.18	1.56	0.27	0.42	327.04
1.3	13.4	10.30	1.27	0.28	0.36	303.37
1.5	13.4	8.93	1.00	0.29	0.29	278.76
1.7	13.4	7.88	0.72	0.31	0.22	249.57
1.9	13.4	7.05	0.39	0.35	0.13	204.19

Fig4. 안정성을 고려한 Specific Energy Density

1.9

여 시스템의 전달함수를 구하고 전달함수의 극 위치를 확인 한 후 안정성이 보장되는 최대 속도를 구하고 이를 이용한 SED를 구하면 I_p/I_t 비가 최대가 아닌 값에서 SED가 최대화 될 수 있다. Fig4의 실선에서 보는 바와 같이 안정성을 고려한 최적의 I_p/I_t 값은 약 0.5 이다.

4. 결론

플라이휠에너지저장장치에서 I_p/I_t ratio 가 중요한 시스템 설 계변수로 작용한다. 즉, 에너지 밀도 측면에서는 플라이휠 형상이 긴막대모양 보다는 넓은 도넛모양이 유리하지만 시스템 안정도 측면에서는 불리하게 작용함을 시뮬레이션을 통해 확인할 수 있었다. 이로써 에너지저장 장치의 목표인 높은 에너지밀도를 고려하고, 동시에 제어기 안정성 영역내의 형상을 설계에 적용하 여 최적 SED를 갖는 설계치를 도출하고 검증하였다.

5. 후기

본 논문은 지식경제부에서 지원하는 전력산업 연구개발 사업 으로 수행된 연구 결과임

참고문헌

- Hwan-Myoung Jeoung, Jeoung, Jae-Wook Yeon, Jae-Ho Choi, Chang-Seop Koh, "Development of a Flywheel Energy Storage System using Superconducting Magnetic Bearing," KIPE, vol 4, No 5, pp. 433~441, 1999.
- Itaru Andoh, Akira Moriyama, Isao Takahashi, "Development of a high efficiency Flywheel UPS using 3 Arms Inverter/Converter," T. IEEE Japan, vol. 116- D, No. 11, 1996.
- 유승열, 모상수, 최상규, 이정필, 한영희, 노명규, "자기부상 형플라이휠에너지 저장 장치의 자기베어링 시스템 설계," 대 한기계학회 춘계학술대회논문집, 963-967, 2007.

Table 1.플라이휠 I_p / I_t ratio 변화에 따른 파라미터