• 제목/요약/키워드: Flywheel Design

검색결과 104건 처리시간 0.026초

이중질량플라이휠의 개발 (Development of Dual Mass Flywheel)

  • 지태한;정재훈;송영래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1067-1072
    • /
    • 2003
  • Generally dual mass flywheel(DMF) is used as a solution to reduce noise and vibration of power train system and to improve the comfortability of passenger car. In this paper, design concept of new DMF model, analytical/numerical model, test procedure and tuning results are presented. Design parameters are studied by some numerical methods and tests. As the result, we can find more efficient model of DMF and reduce vibration level in power train system.

  • PDF

하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가 (Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing)

  • 이정필;김한근;한상철
    • Progress in Superconductivity
    • /
    • 제13권3호
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

회생에너지 저장용 플라이휠 에너지 저장 장치 설계에 관한 연구 (A Study on the Design of the Flywheel Energy Storage Device to Store the Regenerative Energy)

  • 이준호;박찬배;이병송
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.1045-1052
    • /
    • 2013
  • In this study we deal with design procedures for the flywheel energy storage system that has the capacity to store the regenerative energy produced from the railway vehicles. The flywheel energy storage system (FESS) stores the regenerative electrical energy into the high speed rotational flywheel, by conversion the electrical energy into the mechanical rotational energy. Thus the FESS is composed of the energy conversion components, such as the motor and generator, mechanical support components, such as the rotational rotor, the magnetic bearings to support the rotor, and the digital controller to control the air gap between the rotor and the magnetic bearings. In this paper the design procedures for the rotor operating at the rigid mode and the magnetic bearings to support the rotational rotor without contact are presented.

10 kWh급 플라이휠 에너지 저장 시스템 설계 및 제작 (Design and Construction of 10 kWh Class Flywheel Energy Storage System)

  • 정세용;한상철;한영희;박병준;배용채;이욱륜
    • Progress in Superconductivity
    • /
    • 제13권1호
    • /
    • pp.40-46
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel $I_p/I_t$ ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.

플라이 휘일의 설계를 위한 지식기반 전문가 시스템의 개발에 관한 연구 (A study for the development of knowledge based expert system for the design of flywheels)

  • 이경원;윤용산
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1138-1146
    • /
    • 1990
  • 본 연구에서는 이러한 지식기반 전문가 시스템을 이용하여 에너지 저장용 기 계요소인 플라이 위일의 설계를 보조해 주는 지식기반 전문가 시스템을 개발하고자 한 다. 즉 플라이 휘일의 설계, 제작 과정을 크게 개념 설계, 상세 설계 및 해석, 제작, 시험의 단계로 분류할 때 본 연구의 목적은 초기 설계 단계인 개념 설계에 도움을 주 는 시스템을 구성하는 데 있다.프로그램의 구성은 정성적인 경험, 지식을 다룰 수 있는 기호적인 (symbolic)계산과 간단한 수치적인 (numerical)계산을 함께 할 수 있는 복합시스템(hybrid system)으로 구성하고 이러한 과정을 체계적이고 조직적으로 수행 하고 지식의 첨삭이 용이하도록 전체 설계광정을 계층 구조(hierarchical structure) 화하고 설계 자료를 자료 기반화하여 관리하며 그래픽과 연계시켜 전체 지식 기반 시 스템을 총합화 하였다.

운동 에너지를 고려한 Flywheel Energy Storage System 설계와 진동 저감을 위한 3상 유도기의 슬롯수 산정에 관한 연구 (A Study on the Determination of Slot's Number of Rotor to Reduce Noise and Vibration and Design the 3-Phase Induction Motor Considering Kinetic Energy in Flywheel Energy Storage System)

  • 류재호;김희민;이치우;박관수;정동욱
    • 한국자기학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2017
  • 플라이휠 에너지 저장 장치(Flywheel Energy Storage System, FESS)은 회전 운동 에너지를 저장하는 플라이휠 부분과 저장된 회전 에너지를 전기 에너지로 변환시키는 전동기/발전기 부분으로 구성된다. 일반적으로 플라이휠의 회전축은 전동기 및 발전기의 회전축과 동축 일체형으로 연결되고, 이때 전동기 및 발전기의 전자기 토크특성에 따른 동특성 변화는 전체 플라이휠 에너지 저장 장치의 충방전 특성과 기계적인 출력에 영향을 미친다. 본 논문에서는 5[kWh] 급 플라이휠 에너지 저장 장치 용 3상 유도전동기의 설계방법과 회전자 슬롯 수 변화에 따른 토크리플 특성과 고조파 영향을 중점적으로 분석하였다. 먼저, 플라이휠 에너지 저장 장치의 용량과 관성 모멘트에 의한 회전운동에너지의 관계식으로부터 플라이휠 크기와 전동기의 회전자 크기를 산정하는 방법을 제안하였다. 또한 플라이휠 에너지 저장 장치의 회전축의 고속구동 조건을 반영하여, 고속운전 영역에서의 전동기 토크리플 저감을 위한 유도전동기 회전자 슬롯수를 선정하였다. 이로부터 본 논문에서는 전동기 회전축과 동축으로 구성된 플라이휠의 소음 진동을 줄이고 고효율 충방전 특성을 구현하고자 한다.

플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구 (A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle)

  • 송한림;김현수
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

35 kWh급 초전도 플라이휠 에너지 저장 시스템 프레임 설계 및 제작 (Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System Main Frame)

  • 정세용;한영희;박병준;한상철
    • Progress in Superconductivity
    • /
    • 제13권1호
    • /
    • pp.52-57
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. The 35 kWh class SFES is composed of a main frame, superconductor bearings, electro-magnetic dampers, a motor/generator, and a composite flywheel. The energy storing capacity of the SFES can be limited by the operational speed range of the system. The operational speed range is limited by many factors, especially the resonant frequency of the main frame and flywheel. In this study, a steel frame has been designed and constructed for a 35 kWh class SFES. All the main parts, their housings, and the flywheel are aligned and assembled on to the main frame. While in operation, the flywheel excites the main frame, as well as all the parts assembled to it, causing the system to vibrate at the rotating speed. If the main frame is excited at its resonant frequency, the system will resonate, which may lead to unstable levitation at the superconductor bearings and electro-magnetic dampers. The main frame for the 35 kWh class SFES has been designed and constructed to improve stiffness for the stable operation of the system within the operational speed range.

플라이휠 에너지 저장장치를 위한 저 전력소모 하이브리드 마그네틱 베어링의 설계 (Design of Low Power Consumption Hybrid Magnetic Bearing for Flywheel Energy Storage System)

  • 김우연;이종민;배용채;김승종
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.717-726
    • /
    • 2010
  • For the application into a 1 kWh flywheel energy storage system(FESS), this paper presents the design scheme of radial and axial hybrid magnetic bearings which use bias fluxes generated by permanent magnets. In particular, the axial hybrid magnetic bearing is newly proposed in this paper, in which a permanent magnet is arranged in axial direction so that it can support the rotor weight as well as provide a bias flux for axial magnetic bearing. Such hybrid magnetic bearings consume very low power, compared with conventional electromagnetic bearings. In this paper, to stably support a 140 kg flywheel rotor without contact, design process is explained in detail, and magnetic circuit analysis and three-dimensional finite element analysis are carried out to determine the design parameters and predict the performance of the magnetic bearings.