• Title/Summary/Keyword: Fly Ash Erosion

Search Result 15, Processing Time 0.03 seconds

Application and Verification of Cold Air Velocity Technique for Solving Tube Ash Erosion Problem in PC Boilers (석탄화력발전소 보일러 튜브 마모 문제에 관한 저온공기 속도 측정법 적용 및 검증)

  • Yoo, Ki-Soo;Jeong, Kwon-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.663-668
    • /
    • 2012
  • Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue-gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong #2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

NUMERICAL STUDY ON THE EROSION CHARACTERISTICS OF SCR CATALYST DUCT BY VARYING ITS GEOMETRICAL CONFIGURATION (SCR 촉매층 형상변화에 따른 침식특성에 관한 수치해석적 연구)

  • Park, Hun-Chae;Choi, Hang-Seok;Choi, Yeon-Seok
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2011
  • The SCR catalyst in coal-fired power plant is eroded by the collision of fly ash on the catalyst surface. However the erosion of SCR catalyst by the collision of fly ash has not been fully studied, especially in terms of fluid dynamics. Hence, in the present study, we focus on the gas and solid flows inside the SCR catalyst duct and their consequent effect on the erosion characteristics. For this purpose, computational fluid dynamics is applied to investigate the two-phase flows and to evaluate the erosion rate for different flow and particle injection conditions. Also, the erosion rate and pressure drop of commonly used square shape are compared with equilateral triangle and hexagon shapes. The pressure drop of SCR catalyst is increased when SCR catalyst surface area per unit volume increases. The erosion rate of SCR catalyst is enhanced when the particle velocity, mass flow rate of particle, particle diameter and cell density of SCR catalyst are increased. From the results, the pressure drop and erosion rate at the catalyst surface can be minimized by reducing cell density of SCR catalyst to decrease particle velocity and number of particle impacts.

The Characteristics of Solidification and Leachability of Lead Sludge (납슬러지 고형화 및 용출 특성)

  • 연익준;주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.22-30
    • /
    • 1999
  • This study was carried out to examine the compressive strength characteristics of solids solidified with the lead sludge with mixture of cement and fly ashes as additive. And the additives are commercial fly ash and ESP(Electrostatic precipitator) fly ash. The compressive strength of solidified lead sludge solid was increased by adding fly ash up to 46~62%, which was the results of pozzolanic reaction. When replaced the cement with 10%of commercial fly ash, the solid showed the highest value $210{\;}kg/cm^2$, and the solidification conditions were 0.55 of the water/cement ratio and curing for 14 days. Also, the results of leaching test by EPT(Environmental Protection Agency-Toxicity Test) were showed that the solidified lead has leached out under 10%, which was less than 0.173 mg/L of EPA standard. As leaching solutions, the demineralized water, 0.1N acetic acid solution, and synthetic brine were used. and the observations by SEM of the solidified lead-laden solid after EPT leaching test were indicated the severe erosion on solid surface.

  • PDF

Development and Physical Properties of a Glass-ceramic from Fly Ash of Power Station (발전소의 석탄재로부터 결정화유리의 제초 및 물리적 특성)

  • 김형순;김재명;김석원;허증수
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.558-565
    • /
    • 2002
  • Coal fly ash, produced from a power plant in Korea was used for the production of glass-ceramics and the physical properties of glass-ceramics were evaluated. CaO and TiO$_2$ were added into the fly ash during the melting process to reduce the viscosity of molten glass and to induce internal crystallization of glass, respectively. Glass-ceramic was produced through a single stage heat treatment (at 950∼1050$\^{C}$ for 37∼240 min) after preparing glass (iota fly ash powder. As a result, a new tiny rod type crystals (a=7.4480, b=10.7381, c=4.3940 A, $\alpha$=94.9, $\beta$=98.6, γ=108.5°) was found in the glass-ceramics, which showed attractive mechanical properties, high hardness (7.1∼7.6 GPa) and wear resistance (by erosion test). Thus a glass-ceramic produced from thermal power plant fly ash and cell as a source for CaO exhibits a suitable treatment for the recycling and exploitation of waste materials and would be acceptable for a new application far building materials.

Erosion Resistance Evaluation of High-Strength SCC (고강도 고유동 콘크리트의 침식 저항성)

  • Choi, Sok-Hwan;Lee, Jae-Moon;Han, Man-Yop;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.205-208
    • /
    • 2006
  • Damage of hydraulic concrete structures by the abrasion and erosion process is very severe and it indicates that the necessity of considering the influence of this process while designing concrete mixtures. Abrasion wear of concrete in hydraulic structures is caused by the movement of particles, water-borne debris. The resistance against erosion for high-strength self-consolidating concrete(SCC) was examined in this paper. A newly designed testing method is presented in order to quantitatively estimate the erosion of concrete. It was shown that loss of volume in abraded concrete can be explained as function of material parameters such as the amount of fly ash and blast furnace slag. Those admixtures have been widely used to reduce heat of hydration and improve resistance against sulfate attack. The results of current study can be used as a guideline in selecting the composition of concrete exposed to abrasion-wear.

  • PDF

CFD Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud of Turbomachinery

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.233-234
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark lPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Computational Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.203-204
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark JPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Laboratory experiments on the improvement of rockfill materials with composite grout

  • Wang, Tao;Liu, Sihong;Lu, Yang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.307-316
    • /
    • 2019
  • Dam deformation should be strictly controlled for the construction of 300 m-high rockfill dams, so the rockfill materials need to have low porosity. A method of using composite grout is proposed to reduce the porosity of rockfill materials for the construction of high rockfill dams. The composite grout is a mixture of fly ash, cement and sand with the properties of easy flow and post-hardening. During the process of rolling compaction, the grout admixture sprinkled on the rockfill surface will gradually infiltrate into the inter-granular voids of rockfill by the exciting force of vibratory roller to reduce the porosity of rockfill. A visible flowing test was firstly designed to explore the flow characteristics of composite grout in porous media. Then, the compressibility, shear strength, permeability and suffusion susceptibility properties of composite grout-modified rockfill are studied by a series of laboratory tests. Experimental results show that the flow characteristics of composite grout are closely related to the fly ash content, the water-to-binder ratio, the maximum sand size and the content of composite grout. The filling of composite grout can effectively reduce the porosity of rockfill materials, as well as increase the compression modulus of rockfill materials, especially for loose and gap-graded rockfill materials. Composite grout-modified rockfill tends to have greater shear strength, larger suffusion erosion resistance, and smaller permeability coefficient. The composite grout mainly plays the roles of filling, lubrication and cementation in rockfill materials.