• Title/Summary/Keyword: Fluxing

Search Result 46, Processing Time 0.033 seconds

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

Glass Forming Ability of Bulk Amorphous Alloy Scrap by Fluxing (플럭스처리에 의한 벌크비정질합금 스크랩의 비정질형성능)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • When the returned scrap of bulk amorphous alloy is remelted, impurities such as oxides and intermetallic compounds increase. Glass forming ability of its scrap is deteriorated remarkably. Melt fluxing technique is introduced to enhance the glass forming ability during melting and freezing of bulk amorphous alloys. Cu and Zr based alloys are chosen. Small pieces of these alloy scraps and $B_2O_3$ flux are put together in a quartz tube. Cyclic heating and cooling are done by induction heating and water quenching or air cooling. Melting fluxing was effective for both Cu-based and Zr-based alloy, and their glass forming abilities were improved with increasing the number of fluxing.

Epoxy-based Interconnection Materials and Process Technology Trends for Semiconductor Packaging (반도체 패키징용 에폭시 기반 접합 소재 및 공정 기술 동향)

  • Eom, Y.S.;Choi, K.S.;Choi, G.M.;Jang, K.S.;Joo, J.H.;Lee, C.M.;Moon, S.H.;Moon, J.T.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • Since the 1960s, semiconductor packaging technology has developed into electrical joining techniques using lead frames or C4 bumps using tin-lead solder compositions based on traditional reflow processes. To meet the demands of a highly integrated semiconductor device, high reliability, high productivity, and an eco-friendly simplified process, packaging technology was required to use new materials and processes such as lead-free solder, epoxy-based non cleaning interconnection material, and laser based high-speed processes. For next generation semiconductor packaging, the study status of two epoxy-based interconnection materials such as fluxing and hybrid underfills along with a laser-assisted bonding process were introduced for fine pitch semiconductor applications. The fluxing underfill is a solvent-free and non-washing epoxy-based material, which combines the underfill role and fluxing function of the Surface Mounting Technology (SMT) process. The hybrid underfill is a mixture of the above fluxing underfill and lead-free solder powder. For low-heat-resistant substrate applications such as polyethylene terephthalate (PET) and high productivity, laser-assisted bonding technology is introduced with two epoxy-based underfill materials. Fluxing and hybrid underfills as next-generation semiconductor packaging materials along with laser-assisted bonding as a new process are expected to play an active role in next-generation large displays and Augmented Reality (AR) and Virtual Reality (VR) markets.

Evaluation of Cavitation Characteristics for ALBC3 Alloy Coated with Ni-Cr Series Self Fluxing Alloy in Marine Environment (해양환경 하에서 Ni-Cr계 자용성 합금 코팅된 ALBC3 합금의 캐비테이션 특성 평가)

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.538-544
    • /
    • 2013
  • In this study, cavitation characteristics of a thermal spray coating were evaluated in order to improve durability and cavitation resistance. For a coating material, a Ni-based self-fluxing alloy was thermal-sprayed over a ALBC3 alloy substrate and subsequently modified by heat treatment.The resulted self-fluxing coating layer had relatively high hardness compared to the base material, and thus would be expected to exhibit good durability. However, the cavitation characteristics were deteriorated due to the intrinsic porous structure of the coating. Therefore, it is essential to optimize heat treatment condition during thermal spraying coating process for self-fluxing alloy, and in this research the increase in heat treatment temperature is thought to increase the fluidity of B and Si in the self-fluxing alloy and to remove pores or defects, leading to the characteristics enhancement.

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

Fundamental Study on Ni-Base Self-Fluxing Alloy Coating by Thermal Spraying(I) - Effect of Splat Behavior of Sprayed Particles on Mechanical Properties of Coating Layer - (Ni-기 자융성합금의 코팅에 관한 기초적 연구(I) - 용사입자의 편평거동이 코팅층의 기계적 특성에 미치는 영향 -)

  • Kim, Y.S.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.70-79
    • /
    • 1997
  • Ni-base self-fluxing alloy powder particles were flame sprayed onto the SS400 mild steel substrate surface. The effects of both substrate temperature and spraying distance on the splat behavior of sprayed particles were examined. The results obtained are summarized as follows: 1) In the splat behavior of Ni-base self-fulxing alloy particles sprayed onto the SS400 mild steel substrate, splashing was observed under the room temperature condition. On the contrary, it showed circular plate pattern in the substrate temperature range over 373K. 2) It was cleared that there was close relationship between mechanical properties of coating layer and splat behavior of sprayed particles. 3) From the experimental results, optimum spraying conditions showed excellent mechanical properties in the case of Ni-base self fluxing alloy sprayed onto the SS400 mild substrate were 473K of substrate temperature and 250mm of spraying distance.

  • PDF

Characterization of Fluxing and Hybrid Underfills with Micro-encapsulated Catalyst for Long Pot Life

  • Eom, Yong-Sung;Son, Ji-Hye;Jang, Keon-Soo;Lee, Hak-Sun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.343-351
    • /
    • 2014
  • For the fine-pitch application of flip-chip bonding with semiconductor packaging, fluxing and hybrid underfills were developed. A micro-encapsulated catalyst was adopted to control the chemical reaction at room and processing temperatures. From the experiments with a differential scanning calorimetry and viscometer, the chemical reaction and viscosity changes were quantitatively characterized, and the optimum type and amount of micro-encapsulated catalyst were determined to obtain the best pot life from a commercial viewpoint. It is expected that fluxing and hybrid underfills will be applied to fine-pitch flip-chip bonding processes and be highly reliable.

Fundamental Study on Ni-Base Self-Fluxing Alloy Coating(II) - The Effect of Strengthening Treatment on Mechanical Properties of Coating Layer - (Ni-기 자융성합금의 코팅에 관한 기초적 연구(II) - 코팅층의 기계적 특성에 미치는 강화처리의 영향 -)

  • Kim, Y.S.;Oh, M.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.35-40
    • /
    • 1998
  • In this study, the author investigated the effects of strengthening treatments on the mechanical properties of plasma sprayed Ni-base self fluxing alloy. Strengthening treatments for sprayed specimens were carried out in 4 different temperature conditions in vacuum furnace. The mechanical properties, such as microhardness, thermal shock resistance and erosion resistance were tested for the sprayed specimens after strengthening treatments. And it was proved that the mechanical properties of coating layer were much improved by strengthening treatments.

  • PDF

Recyling of Waste Materials for Iron Ore Sintering (제철소내 폐기물의 소결공정에서의 이용기술)

  • 문석민;이대열;정원섭;신형기
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.12-20
    • /
    • 1994
  • Difficulties lies on using the dust from iron making process as a raw material for sintering process mainly because of high amount of Zn or alkali content and its ultra fine characteristics. To eliminate these toxic influence, new fluxing materials were tested and could get a very successful results. This fluxing materials, Calcium-ferrite of magnesio-ferrite were made from various waste materials such as lime stone sludge, bag filter dust, waste EP dust and dolomite sludge by simple way of pre-sintering. Sintering behavior as a fluxing materials was revealed to be good in any aspects and new concept of total recycling system could be established.

  • PDF