• Title/Summary/Keyword: Flux-flow

Search Result 1,680, Processing Time 0.022 seconds

The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS (지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구)

  • Hong, Seong-Ki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

Numerical Analysis for Supersonic Off-Design Turbulent Jet Flow (초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구)

  • Kim Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.57-66
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit. The waves reflect repeatedly on the center axis and the sonic surface in the shear layer. The pressure difference is resolved across these reflected waves. In this paper, the axi-symmetric Navier-Stokes equation has been used with the κ-ε turbulence model. The second order TVD scheme with flux limiters, based on the flux vector split with the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

A Study on the Heat Transfer Phenomena in Coiled Tubes with Variable Curvature Ratios (곡률비가 다양한 코일 튜브에서의 열전달현상에 관한 연구)

  • Han, Kyuil;Park, Jong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1509-1520
    • /
    • 1998
  • An experiment was carried out for the fully developed turbulent flow of water in tube coils on the condition of uniform heat flux. The present work was conducted for various ranges for Dean number(1794~1321), Prandtl number (2.5~4.5), curvature ratio parameters (22~60). Heat transfer to steady viscous flow in coiled tubes of circular cross section was studied for fully developed velocity and temperature fields under the thermal boundary condition of uniform heat flux. The peripherally local Nusselt number correlated as a function of Dean and Prandtl numbers. We studied the flow in heat coiled tubes under the influence of both centrifugal and buoyancy forces in order to gain insight into the flow pattern. In the present study, we obtained three emperical formulas, $Nu_v=0.0231Re^{0.84}Pr^{0.4}(a/R)^{0.13}$ (vertical) $Nu_c=0.0241Re^{0.86}Pr^{0.4}(a/R)^{0.08}$ (corrugated) $Nu_h=0.0227Re^{0.84}Pr^{0.4}(a/R)^{0.09}$ (horizontal).

An Experimental Study on Dryout Pattern of Two-Phase Flow in Helically Coiled Tubes

  • Chung, Won-Seok;Sa, Young-Cheol;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1540-1549
    • /
    • 2002
  • Experimental results are presented for the effects of coil diameter, system pressure and mass flux on dryout pattern of two-phase flow in helically coiled tubes. Two tubes with coil diameters of 215 and 485 mm are used in the present study, Inlet system pressures range from 0.3 to 0.7 MPa, mass flux from 300 to 500 kg/㎡s, and heat flux from 36 to 80 kw/㎡. A partial dryout region exists because of the geometrical characteristics of the helically coiled tube. The length of the partial dryout region increases with coil diameter and system pressure. On the other hand, it decreases with increasing mass flux. The critical quality at the tube top side increases with mass flux, but decreases with increasing system pressure. This tendency is more notable when the coil diameter is larger. When the centrifugal force effect becomes stronger, dryout starts at the top and bottom sides of the tube. However, when the gravity effect becomes stronger, dryout is delayed at the tube bottom side. In some cases when the mass flux is low, dryout occurs earlier at the outer side than at the inner side of the tube because of film inversion.

An Experimental Study on the Heat Exchangers in the Pulse Tube Refrigerator (맥동관 냉동기 열교환기에 관한 실험적 연구)

  • 남관우;정상권;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.284-291
    • /
    • 2000
  • A basic pulse tube refrigerator has been constructed with extensive instrumentation to study the characteristics of the heat exchanger experimentally under the oscillating pressure and the oscillating flow. This paper describes the sequential experiments with the basic pulse tube refrigerator. The experiments were performed for various cycle frequencies under the square pressure wave forms. First, the heat flux was measured through the cycle at the both cold and warm end heat exchangers without the regenerator. In order to enhance the thermal communication capability of the heat exchanger with the gas at low operating frequencies, a unique design of the triangular shape radial fin concept was applied to the heat exchangers. For the fin heat exchanger, the measured heat flux and the calculated heat flux from the two well-known oscillating heat transfer correlations were compared and discussed. Second, the regenerator was added to the pulse tube to make a basic pulse tube refrigerator configuration. The experiment showed the great impact of the regenerator on the temperature and the heat flux profiles. At the warm-end, the cyclic averaged heat flux had its maximum value at the specific operating frequency. The paper presents the explanation of the surface heat pumping effect as well as the experimental data.

  • PDF

An Improved Mechanistic Model to Predict Critical Heat Flux in Subcooled and Low Quality Convective Boiling

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.236-255
    • /
    • 1999
  • An improved mechanistic model was developed to predict a convective boiling critical heat flux (CHF) in the vertical round tubes with uniform heat fluxes. The CHF formula for subcooled and low quality boiling was derived from the local conservation equations of mass, energy and momentum, together with appropriate constitutive relations. The model is characterized by the momentum balance equation to determine the limiting transverse interchange of mass flux crossing the interface of wall bubbly layer and core by taking account of the convective shear effect due to the frictional drag on the wall-attached bubbles. Comparison between the present model predictions and experimental CHF data from several sources shows good agreement over a wide range of How conditions. The present model shows comparable prediction accuracy with the CHF look-up table of Groeneveld et al. Also the model correctly accounts for the effects of flow variables as well as geometry parameters.

  • PDF

ANALYSIS OF A STRATIFIED NATURAL CONVECTION FLOW WITH THE SECOND-MOMENT CLOSURE (이차모멘트 난류모델을 사용한 성층화된 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2007
  • A computational study on a strongly stratified natural convection is performed with the elliptic blending second-moment closure. The turbulent heat flux is treated by both the algebraic flux model (AFM) and the differential flux model (DFM). Calculations are performed for a turbulent natural convection in a square cavity with conducting top and bottom walls and the calculated results are compared with the available experimental data. The results show that both the AFM and DFM models produce very accurate solutions with the elliptic-blending second-moment closure without invoking any numerical stability problems. These results show that the AFM and DFM models for treating the turbulent heat flux are sufficient for this strongly stratified flow. However, a slight difference between two models is observed for some variables.

A Study on the Development of Industrial Dryer using the Superadiabatic Combustion Phenomena (초단열 연소현상을 이용한 산업용 건조기 개발에 관한 연구)

  • Chae, J.O.;Hwang, J.W.;Han, J.H.;Hwang, H.J.;Jun, J.K.;Han, J.O.;Lee, J.S.;You, H.S.;Lee, H.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.168-174
    • /
    • 2000
  • This paper illustrates the validity of reciprocating type superadiabatic combustor as a industrial applicable dryer. After the investigations of inner and surface temperature distributions of combustor various with air-fuel(methane) ratio, mixture flow rate and reciprocating time, this combustor can be applied in industrial dryer at certain operating conditions. The results are as follows. 1) Higher equilivalence ratio emits more radiation heat flux at the censer chamber 2) Higher mixture flow rate makes more uniform temperature distribution. however, due to the heat transfer from censer chamber to porous media, the radiation beat flux is worse. 3) Longer reciprocating time emit more radiation heat flux. however, this case also makes temperature distribution wide

  • PDF

Numerical Analysis of Hypersonic Flow over Small Radius Blunt Bodies (작은 크기의 무딘 물체에 대한 극초음속 유동의 수치해석)

  • Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The effect of nose radius on aerodynamic heating are investigated by using the Wavier-Stokes code extended to thermochemical nonequilibrium airflow. A spherical blunt body, whose radius varies from 0.003048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km is considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Obtained result reveals that the flow chemistry for very small radius is nearly frozen, and therefore the contribution of heat flux due to chemical diffusion is smaller than that of translational energy. As the radius becomes larger, the portion of diffusion heat flux becomes greater than translational heat flux and approaches to a constant value.

  • PDF

Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency

  • Zamaniasl, Mohammadmehdi
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.387-394
    • /
    • 2019
  • Membrane distillation (MD) is one of the water treatment processes which involves the momentum, heat and mass transfer through channels and membrane. In this study, CFD modeling has been used to simulate the heat and mass transfer in the direct contact membrane distillation (DCMD). Also, the effect of operating parameters on the water flux is investigated. The result shows a good agreement with the experimental result. Results indicated that, while feed temperature is increasing in the feed side, water flux improves in the permeate side. Since higher velocity leads to the higher mixing and turbulence in the feed channel, water flux rises due to this increase in the feed velocity. Moreover, results revealed that temperature polarization coefficient is rising as flow rate (velocity) increases and it is decreasing while the feed temperature increases. Lastly, the thermal efficiency of direct contact membrane distillation is defined, and results confirm that thermal efficiency improves while feed temperature increases. Also, flow rate increment results in enhancement of thermal efficiency.